Tag Archives: excavator gear

China supplier Outer Gear Turntable Bearing Slewing Ring for Excavator

Product Description

Product Description

 

With the tough, heavy-duty conditions of the mining industry, excavators, bucket wheel excavators and stackers / reclaimers are up against a real challenge. Slewing bearing solutions are vital for the performance and reliability of these applications.

 

Thanks to a high carrying capacity and high resistance to overturning moments, King Steel slewing bearing solutions improve:

 

* Machinery reliability
* Operator comfort
* Working accuracy
And, as a result, increase the availability and productivity of the excavator.

 

King Steel slewing bearing solutions are available in different designs to meet the requirements of mini excavators as well as giant shovels. With an Ruding Steel centralized lubrication system, the Ruding Steel slewing bearing solutions become even more efficient. 

Specifications:

Product Name

High Precision Slewing Bearing

Material

Chrome Steel

Operating Temperature

-40°C ~ +50°C

Heat treatment

Quenching and tempering, Raceway induction quenching

Standard

EN 15714 2.2; EN 15714 3.1.B ; EN15714 3.1.C

Features

Four Point Contact

Application

Crane, Excavator, all kinds of machine

Manufacturing Process:
Forging ring body material — Rough Lathing — Raceway heat treatment — Drilling — Teeth cutting — Teeth heat treatment — Ball hardness inspection — Assembling — Finall inspection — Packaging

Packaging & Shipping

Contact us

 

Please contact us for more information and quotations.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Vacuum, Antimagnetic, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Non-Seal
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

What are the different types and configurations of slewing rings available in the market?

Slewing rings are available in various types and configurations to cater to the diverse needs of different applications. The following are the different types and configurations of slewing rings commonly available in the market:

  • Single-Row Ball Slewing Rings: This type of slewing ring consists of a single row of balls placed between two rings. It offers compact design, low weight, and high load-carrying capacity. Single-row ball slewing rings are commonly used in applications where axial and radial loads need to be supported.
  • Double-Row Ball Slewing Rings: Double-row ball slewing rings have two rows of balls, providing higher load-carrying capacity compared to single-row designs. They are suitable for applications that require increased load capacity and improved stiffness.
  • Three-Row Roller Slewing Rings: Three-row roller slewing rings feature three rows of rollers arranged in a crisscross pattern. This configuration allows for higher load-carrying capacity and increased rigidity. Three-row roller slewing rings are commonly used in heavy-duty applications where significant radial, axial, and moment loads need to be supported.
  • Ball and Roller Combination Slewing Rings: In some cases, slewing rings are designed with a combination of ball and roller elements. This configuration provides a balance between load capacity and reduced friction. It offers improved rotational characteristics and is often used in applications requiring high load capacity and smooth rotation.
  • Internal Gear and External Gear Slewing Rings: Slewing rings can be equipped with internal or external gears. Internal gear slewing rings have the gear teeth on the inner ring, while external gear slewing rings have the gear teeth on the outer ring. The gear mechanism allows for controlled rotation and can be driven by external components such as motors or hydraulic systems. The choice between internal or external gear configuration depends on the specific application requirements.
  • Non-Gear Slewing Rings: Some slewing rings are designed without integrated gears. These non-gear slewing rings are often used in applications where the rotation is driven by external components or when a separate gear mechanism is already in place.
  • Customized and Specialized Slewing Rings: In addition to the standard types and configurations, slewing rings can be customized and designed to meet specific application requirements. Customized slewing rings may involve variations in dimensions, load capacity, gear specifications, sealing systems, or materials to suit unique applications or challenging operating conditions.

The availability of different types and configurations of slewing rings allows for the selection of the most suitable design based on factors such as load requirements, space limitations, rotational speed, environmental conditions, and application-specific needs. It is essential to consider these factors when choosing a slewing ring to ensure optimal performance and reliability in the intended application.

What are the different types and configurations of slewing rings available in the market?

Slewing rings are available in various types and configurations to cater to the diverse needs of different applications. The following are the different types and configurations of slewing rings commonly available in the market:

  • Single-Row Ball Slewing Rings: This type of slewing ring consists of a single row of balls placed between two rings. It offers compact design, low weight, and high load-carrying capacity. Single-row ball slewing rings are commonly used in applications where axial and radial loads need to be supported.
  • Double-Row Ball Slewing Rings: Double-row ball slewing rings have two rows of balls, providing higher load-carrying capacity compared to single-row designs. They are suitable for applications that require increased load capacity and improved stiffness.
  • Three-Row Roller Slewing Rings: Three-row roller slewing rings feature three rows of rollers arranged in a crisscross pattern. This configuration allows for higher load-carrying capacity and increased rigidity. Three-row roller slewing rings are commonly used in heavy-duty applications where significant radial, axial, and moment loads need to be supported.
  • Ball and Roller Combination Slewing Rings: In some cases, slewing rings are designed with a combination of ball and roller elements. This configuration provides a balance between load capacity and reduced friction. It offers improved rotational characteristics and is often used in applications requiring high load capacity and smooth rotation.
  • Internal Gear and External Gear Slewing Rings: Slewing rings can be equipped with internal or external gears. Internal gear slewing rings have the gear teeth on the inner ring, while external gear slewing rings have the gear teeth on the outer ring. The gear mechanism allows for controlled rotation and can be driven by external components such as motors or hydraulic systems. The choice between internal or external gear configuration depends on the specific application requirements.
  • Non-Gear Slewing Rings: Some slewing rings are designed without integrated gears. These non-gear slewing rings are often used in applications where the rotation is driven by external components or when a separate gear mechanism is already in place.
  • Customized and Specialized Slewing Rings: In addition to the standard types and configurations, slewing rings can be customized and designed to meet specific application requirements. Customized slewing rings may involve variations in dimensions, load capacity, gear specifications, sealing systems, or materials to suit unique applications or challenging operating conditions.

The availability of different types and configurations of slewing rings allows for the selection of the most suitable design based on factors such as load requirements, space limitations, rotational speed, environmental conditions, and application-specific needs. It is essential to consider these factors when choosing a slewing ring to ensure optimal performance and reliability in the intended application.

Can you provide insights into the importance of proper installation and alignment of slewing rings?

Proper installation and alignment of slewing rings are of utmost importance for ensuring optimal performance, longevity, and safety of rotating systems. Here’s a detailed explanation of the importance of proper installation and alignment of slewing rings:

  • Load Distribution: Correct installation and alignment of slewing rings ensure proper load distribution across the rolling elements and raceways. When a slewing ring is improperly installed or misaligned, excessive loads may be concentrated on specific areas, leading to accelerated wear, premature failure, and reduced load-bearing capacity. Proper alignment helps distribute loads evenly, maximizing the life expectancy of the slewing ring.
  • Smooth Operation: Accurate installation and alignment contribute to the smooth operation of rotating systems. Misalignment can result in increased friction, uneven motion, vibrations, and noise. These issues not only reduce efficiency but also impact the overall performance and reliability of the system. Proper alignment minimizes friction and ensures smooth and precise rotational movement, enhancing the system’s efficiency and productivity.
  • Reduced Wear and Tear: Improper installation or misalignment can cause excessive wear and tear on the slewing ring and associated components. Misalignment can lead to increased rolling element and raceway stresses, resulting in accelerated fatigue and surface damage. By achieving proper alignment, the slewing ring operates within its designed parameters, reducing wear and extending its operational life.
  • Optimized Performance: Proper installation and alignment directly impact the performance of rotating systems. Accurate alignment ensures that components such as gears, motors, and drive systems mesh correctly with the slewing ring. This alignment facilitates efficient power transmission, reduces energy losses, and improves the overall performance and responsiveness of the system.
  • Prevention of Structural Damage: Misalignment of slewing rings can exert excessive forces on the supporting structure or adjacent components. Over time, these forces can cause structural damage, misalignment in other parts of the system, or even equipment failure. Proper installation and alignment help prevent such structural damage, ensuring the integrity and longevity of the entire system.
  • Safety Considerations: Correct installation and alignment of slewing rings are crucial for safety in rotating systems. Misalignment can lead to unexpected movements, uncontrolled motion, or component failure, posing a risk to personnel, equipment, and the surrounding environment. Proper alignment reduces the likelihood of accidents, improves operational safety, and ensures compliance with safety regulations.
  • Ease of Maintenance: Properly aligned slewing rings are easier to maintain and service. Routine maintenance tasks such as lubrication, inspection, and replacement of components can be performed more efficiently when the slewing ring is correctly installed and aligned. This reduces downtime, extends maintenance intervals, and improves the overall operational efficiency of the system.

In summary, proper installation and alignment of slewing rings are critical for achieving optimal performance, reliability, and safety in rotating systems. Accurate alignment ensures load distribution, smooth operation, reduced wear, optimized performance, prevention of structural damage, enhanced safety, and ease of maintenance. It is essential to follow manufacturer guidelines, industry standards, and best practices to ensure the correct installation and alignment of slewing rings, maximizing their operational lifespan and the efficiency of the entire system.

China supplier Outer Gear Turntable Bearing Slewing Ring for Excavator  China supplier Outer Gear Turntable Bearing Slewing Ring for Excavator
editor by Dream 2024-05-17

China Professional Swing Circle Zx160 with Inner Gear Excavator Slewing Ring Bearing in Stock

Product Description

Swing Circle ZX160 With Inner Gear Excavator Slewing Ring Bearing In Stock

Excavators, also known as excavating machinery, also known as excavators, are earth-moving machinery that use buckets to excavate materials above or below the bearing surface and load them into transport vehicles or unload them to a stockyard.
The materials excavated by the excavator are mainly soil, coal, silt, and pre-loose soil and rocks. From the perspective of the development of construction machinery in recent years, the development of excavators is relatively fast, and excavators have become 1 of the most important construction machinery in engineering construction.

We can provide alternative Swing circle for your , HITACHI, KOBELCO, HYUNDAI, VOLVO, DOOSAN, DAEWOO, JCB,CASE, SUMITOMO, KATO, etc.,There are normal and non standard over 1000 hundreds types for you choose.
product-list-1.html 

USA Excavator Slewing Rings

CAT70B CAT120B CAT311 CAT305.5 CAT306 CAT307 CAT308 CAT312 CAT315 CAT320 CAT323 CAT324 CAT325 CAT326 CAT330 CAT336 CAT345 CAT349 CAT365 CAT374 CAT390 CAT40/45 CAT60(YC60-8) E70B CAT80 CAT120B E140 E160 E180 E200B E215 E219 E219D CAT225/B/D CAT229 CAT305.5 CAT306/E E307 E307B E307C/D/E CAT308B E311B E312B CAT311C CAT311D CAT312C/D CAT313C/D CAT315 E320B E320C/D E323C/D E322 E324D CAT330B CAT330C CAT336D CAT336D1 E340 CAT345B CAT345C CAT345D CAT349D CAT365

CX50B CX55 CX210 CX210B CX210 CX210B CX240A

Japan Excavator Slewing Bearings

PC30 PC45 PC50 PC55 PC56 PC60-5-6-7 PC60-8 PC70-8 PC78 PC100-3 PC120-6 PC130-7 PC150 PC160 PC200-7/8 PC220 PC228 PC270 PC240 PC300-6/7 PC360 PC400-6/7/8 PC450-6 PC600-6 PC650-3 PC650 PC800 PC1000 PC1200 PC1250 PC300-7 PC300-8 PC350-6 PC350-7 PC350-8 PC360-7 PC400-5 PC400-5A PC400-6 PC400-7 PC400-8 PC450-6 PC450-7 PC450-8 PC650-6E PC650-8 PC200-8 PC210-10 PC210LC-10 PC210-7 PC220-7 PC220-8 PC230-7 PC240-8 PC200-8 PC210-8 PC220-8 PC270 PC300 PC300LC PC300-5 PC300-6 PC130-7(4D102) PC150-5 PC180-5 PC160-7
PC200-5 PC210-5K PC220-5 PC200-6(S6D95)PC210-6(S6D95)PC220-6(S6D95)PC230-6(S6D95)PC200-6(S6D102)PC210-6(S6D102)PC220-6(S6D102) PC230-6(S6D102)PC200-7(S6D102)PC200-7 PC18 PC50-7 PC56 PC60-1 PC60-5 PC60-6 PC60-7 PC60-6 PC70-6 PC70-8 PC60-7 PC70-7 PC100-5 PC120-5 PC100-6(S4D95) PC120-6(S4D95) PC130-6(S4D95) PC130-7(S4D95) PC100-6(4D102) PC110-7(4D102) PC120-6(4D102) PC130-6(4D102)

UH571 UH045 UH063 UH083 EX35 EX40 EX55 EX60 EX60-3 EX120 EX200 EX300 EX310 ZX60 ZX70 ZA80 ZX110 ZX120 ZX200 ZX210 ZX250 ZX290 ZX330 ZX470 ZX870EX1000 EX1200 ZX225UR ZX520 EX120-3 EX120-5 EX130H-5 ZAX110 ZAX120-6 ZAX120 UH07-7 ZAX200 ZXA210 ZAX200-3G ZAX250-3G ZAX200-3 ZAX200LC-3 ZAX210H-3 ZAX210LCH-3 ZAX210K-3 ZAX210LCK-3 ZAX210LCN-3 EX200-1/2 EX200LC-2 EX200-3 EX200LC-3 EX200H-3 EX200LCH-3 EX200-5 EX210H-5 EX210LCH-5 ZAX225 ZX230 EX220-2 EX220-3 EX220-5 EX270-5 EX230H-3 EX280H-5 ZAX240H ZAX240LCH
ZAX240K ZAX250 ZAX270 ZAX280LC EX290LCH-5 EX300-1 EX300-2 EX300H-2 EX300-3 EX300-3C EX300H-3 EX310H-3C
EX310LCH-3C ZAX330 EX350 ZXA360 ZAX450-6 EX60-1 EX60-2 EX60-5 EX60LC-5 EX80-5 ZX60 ZAX70 ZA80 EX100-1 EX100-3 EX100-5 EX110-5 EX120-2
U15 KX41 KX41-2 KX135 KX185 KX155 KX161 KX163 KX165 KX183 K030 KX35 KX15 KX150 KX185

SK35 SK50 SK60 SK75 SK100 SK120 SK200-1-2-3-4-5-6 SK230 SK250 SK260 SK280 SK300 SK330 SK330-6 SK350 SK400 SK450 SK480 RK200 SK55 SK60-3 SK60-5 SK60-8 SK60SR SK75/SK75-8 K904C SK905C SK907B K907C SK100 SK120-3 SK120-5 SK135 SK03 SK04 SK045N2 SK130 SK140-8 SK07-1-N2 SK07-N2 SK200-1 SK200-2 SK200-3 SK200-5 SK200-6 SK210-6 SK200-8 SK210-8 SK230-6E SK250-6 SK250-8 SK260-8 SK270D SK330-8 SK350-8 SK480-6 SK480-8

SH55 SH60 SH75 SH50 SH100 SH120 SH125 SH135 SH140 SH145 SH200 SH200-3-5 SH220-2-3 SH240 SH225 SH260 SH265 SH280 SH300 SH340 SH350 SH400 SH430 SH450 SH40T SH60-1 SH100A1 SH120 SH120A1 SH120A2 SH120A3 SH200A1 SH200A3 SH210A3 SH210A5 SH220-2 SH220-3 SH225 SH260 SH265 SH240-5 SH340 SH300A2 SH350

HD100 HD250 HD450 HD512 HD513 HD516 HD550 HD700 HD770 HD800 HD820 HD880 HD900 HD1571 HD1430 HD2045 HD250-5 HD250-7 HD307 HD400-7 HD512 HD513 HD516 HD700-5 HD700-7 HD820-1/2/3/7 HD770-5 HD800-8 HD800-7 HD900-7 HD770-1 HD770-2 HD770-SE HD1571-3

ViO35 ViO55 ViO75 NS60-5 BT160C BT175 IHI135 IHI150 IHI160

MS70-2 MS090-8 MS110-2 MS120-1/2 MS120-8 MS140-1 MS180-3 MS180-8

South Korea Slewing Ring Bearings

R55 R60 R80 R130LC-3-5 R150 R190 R200 R200-5 R210 R215-7/9 R220 R225LC-7/9 R245 R260 R265 R290 R290 R290LC-7 R300LC R305LC R330LC R340 R375 R360LC-7 R390 R450LC R470 R485 R500 R55-5 R60-5 R55-7 R60-7 R70-7 R80 R110LC-7 R130-5 R130-7 R140LC-7 R150LC-7 R150LC-9 R200W-7 R200 R200-3 R200-5 R210-3 R210-5 R210-5D R220-3 R220-5 R210-7 R210-9 R215-7 R225-7 R220-9 R225-9 R260-7 R265-7 R290-3 R300-5 R290-7 R305-7 R305-9 R320-7

DH35 DH55 DH60 DH55 DH60 DH80 DH80-7 DH80GOLD DH150 DH200 DH220-3-5 DH280-5 DX60-DX200-DX225 DX260 DH290 DH360 DH420 DH500 DH55-5 DH60/DX60 DH80/DH80GLD DH130-5 DH150-7 DX150 DH220-3 DH215-7 DH215-9E DH220-5 DH220-7 DH215-9 DH225-7/9 DX225-7 DH250-5 DX255-5 DH258-7 DH280 DH290 DH300-5 DH300 DH300-7 DX300-9 DH360-5/7 DH400-5 DH370-7 DH370-9 DH420 DH450-3 DH500 SE210-1 SE210-2

China Manufacturer Slew Ring

CLG904 CLG9055 CLG906 CLG907 CLG9075 CLG908 CLG915 CLG150 CLG920 CLG921 CLG922 CLG225 CLG924 CLG925 CLG933 CLG936 CLG939 CLG942 CLG948 CLG950 CLG952 CLG200 CLG205 CLG220 CLG225

XE55 XE60 XE65 XE75 XE80 XE85 XE135 XE150 XE155 XE200 XE205 XE215 XE225 XE245 XE270 XE305 XE335 XE370 XE380 XE400 XE470 XE490 XE700

YC13 YC18 YC18-3 YC35 YC45 YC55 YC65 YC65-2 YC85 YC85-3 YC135 YC225LC YC230

SY55 SY60 SY65 SY70 SY75 SY85 SY95 SY115 SY135 SY155 SY195 SY200 SY205 SY215 SY220 SY225 SY235 SY245 SY285 SY305 SY335 SY365 SY375 SY395 SY415 SY485

 UK/SWEDEN/GERMANY Swing Bearing

R914 R924 R944 R944CLC
8061 8065 JS130 JS140 JS200 IS210 JS220 JCB70 JCB360 JS205
EC55 EC60 EC140BP EW145BP EW160BB EC210 EC240 EC290 EC360LC EC380 EC460 EC480 EC700 EC210B EC360

 
Product Process
Application:

 

– Excavators – Drilling rigs – Mining Equipments – Cranes   -Offshore Equipments  – Vehicles  – Machine Tools  – Wind Turbines

About Us:
HangZhou MC Bearing Technology Co.,Ltd (LYMC),who is manufacture located in bearing zone, focus on Slewing bearing, cross roller bearing and pinion,Dia from 50mm-8000mm, Our team with technical and full experience in the bearing industry.
*Professional in researching, developing, producing & marketing high precision bearings for 16 years;
*Many series bearings are on stock; Factory directly provide, most competitive price;
*Advanced CNC equipment, guarantee product accuracy & stability;
*One stop purchasing, product include cross roller bearing, rotary table bearing, robotic bearing, slewing bearing, angular contact ball bearing, large and extra large custom made bearing, diameter from 50~9000mm;
*Excellent pre-sale & after sale service. We can go to customers’ project site if needed.
*Professional technical & exporting team ensure excellent product design, quotation, delivering, documentation & custom clearance.

Our Service:

FAQ:
1.Q: Are you trading company or manufacturer ?
A: We are professional slewing bearing manufacturer with 20 years’ experience.
2.Q: How long is your delivery time?
A: Generally it is 4-5 days if the goods are in stock. or it is 45 days if the goods are not in
stock, Also it is according to quantity.
3.Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample, it is extra.
4.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.
5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.
6.Q: How about your guarantee?
A: We provide lifelong after-sales technical service. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Straight Raceway
Material: 50mn/42CrMo
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you provide insights into the importance of proper installation and alignment of slewing rings?

Proper installation and alignment of slewing rings are of utmost importance for ensuring optimal performance, longevity, and safety of rotating systems. Here’s a detailed explanation of the importance of proper installation and alignment of slewing rings:

  • Load Distribution: Correct installation and alignment of slewing rings ensure proper load distribution across the rolling elements and raceways. When a slewing ring is improperly installed or misaligned, excessive loads may be concentrated on specific areas, leading to accelerated wear, premature failure, and reduced load-bearing capacity. Proper alignment helps distribute loads evenly, maximizing the life expectancy of the slewing ring.
  • Smooth Operation: Accurate installation and alignment contribute to the smooth operation of rotating systems. Misalignment can result in increased friction, uneven motion, vibrations, and noise. These issues not only reduce efficiency but also impact the overall performance and reliability of the system. Proper alignment minimizes friction and ensures smooth and precise rotational movement, enhancing the system’s efficiency and productivity.
  • Reduced Wear and Tear: Improper installation or misalignment can cause excessive wear and tear on the slewing ring and associated components. Misalignment can lead to increased rolling element and raceway stresses, resulting in accelerated fatigue and surface damage. By achieving proper alignment, the slewing ring operates within its designed parameters, reducing wear and extending its operational life.
  • Optimized Performance: Proper installation and alignment directly impact the performance of rotating systems. Accurate alignment ensures that components such as gears, motors, and drive systems mesh correctly with the slewing ring. This alignment facilitates efficient power transmission, reduces energy losses, and improves the overall performance and responsiveness of the system.
  • Prevention of Structural Damage: Misalignment of slewing rings can exert excessive forces on the supporting structure or adjacent components. Over time, these forces can cause structural damage, misalignment in other parts of the system, or even equipment failure. Proper installation and alignment help prevent such structural damage, ensuring the integrity and longevity of the entire system.
  • Safety Considerations: Correct installation and alignment of slewing rings are crucial for safety in rotating systems. Misalignment can lead to unexpected movements, uncontrolled motion, or component failure, posing a risk to personnel, equipment, and the surrounding environment. Proper alignment reduces the likelihood of accidents, improves operational safety, and ensures compliance with safety regulations.
  • Ease of Maintenance: Properly aligned slewing rings are easier to maintain and service. Routine maintenance tasks such as lubrication, inspection, and replacement of components can be performed more efficiently when the slewing ring is correctly installed and aligned. This reduces downtime, extends maintenance intervals, and improves the overall operational efficiency of the system.

In summary, proper installation and alignment of slewing rings are critical for achieving optimal performance, reliability, and safety in rotating systems. Accurate alignment ensures load distribution, smooth operation, reduced wear, optimized performance, prevention of structural damage, enhanced safety, and ease of maintenance. It is essential to follow manufacturer guidelines, industry standards, and best practices to ensure the correct installation and alignment of slewing rings, maximizing their operational lifespan and the efficiency of the entire system.

What advantages do slewing rings offer compared to other rotational components?

Slewing rings offer several advantages compared to other rotational components. Their unique design and features make them a preferred choice in various applications. Here’s a detailed explanation of the advantages that slewing rings offer:

  • Compact Design: Slewing rings have a compact design that allows for efficient use of space. Compared to other rotational components such as gears and bearings, slewing rings provide a compact solution for supporting axial, radial, and moment loads while enabling rotational motion. Their compactness is especially advantageous in applications with limited space or weight constraints.
  • High Load-Carrying Capacity: Slewing rings are designed to handle significant loads. They are capable of supporting both axial and radial loads, as well as moment loads that result from uneven weight distribution or external forces. The robust construction and precise engineering of slewing rings enable them to withstand heavy loads, making them suitable for applications that require high load-carrying capacity.
  • Smooth Rotation: Slewing rings offer smooth rotation, allowing for precise and controlled motion. The rolling elements, whether balls or rollers, are positioned and guided within the raceways of the slewing ring to minimize friction and ensure smooth movement. This smooth rotation contributes to precise positioning and controlled motion, which is essential in applications that require accurate positioning and smooth operation.
  • Integrated Gear Mechanism: Many slewing rings come with an integrated gear mechanism. This eliminates the need for additional gearing components, simplifies the design, and reduces assembly time and costs. The integrated gear mechanism allows for torque transmission and rotational control, enabling precise and controlled motion without the need for external gearing systems.
  • Backlash Control: Slewing rings can be designed with minimal backlash, ensuring precise motion control. Backlash refers to the play or clearance between mating gears or components, which can lead to lost motion or inaccuracies in positioning. By minimizing backlash, slewing rings offer improved accuracy and repeatability in motion control applications.
  • Versatility and Customization: Slewing rings are highly versatile and can be customized to meet specific application requirements. They can be tailored in terms of dimensions, load capacity, mounting interfaces, gear specifications, sealing systems, and materials. This versatility allows slewing rings to be optimized for various industries and applications, ensuring the best performance and compatibility.
  • Durable and Low Maintenance: Slewing rings are designed to be durable and require minimal maintenance. They are constructed with high-quality materials, precision manufacturing, and appropriate sealing systems to withstand harsh operating conditions and contaminants. This durability and low maintenance requirement contribute to the long service life and reliability of slewing rings.

Overall, slewing rings offer advantages such as compact design, high load-carrying capacity, smooth rotation, integrated gear mechanism, backlash control, versatility, customization options, and durability. These advantages make slewing rings a preferred choice in various applications, including construction machinery, material handling equipment, cranes, wind turbines, robotics, and manufacturing systems.

What advantages do slewing rings offer compared to other rotational components?

Slewing rings offer several advantages compared to other rotational components. Their unique design and features make them a preferred choice in various applications. Here’s a detailed explanation of the advantages that slewing rings offer:

  • Compact Design: Slewing rings have a compact design that allows for efficient use of space. Compared to other rotational components such as gears and bearings, slewing rings provide a compact solution for supporting axial, radial, and moment loads while enabling rotational motion. Their compactness is especially advantageous in applications with limited space or weight constraints.
  • High Load-Carrying Capacity: Slewing rings are designed to handle significant loads. They are capable of supporting both axial and radial loads, as well as moment loads that result from uneven weight distribution or external forces. The robust construction and precise engineering of slewing rings enable them to withstand heavy loads, making them suitable for applications that require high load-carrying capacity.
  • Smooth Rotation: Slewing rings offer smooth rotation, allowing for precise and controlled motion. The rolling elements, whether balls or rollers, are positioned and guided within the raceways of the slewing ring to minimize friction and ensure smooth movement. This smooth rotation contributes to precise positioning and controlled motion, which is essential in applications that require accurate positioning and smooth operation.
  • Integrated Gear Mechanism: Many slewing rings come with an integrated gear mechanism. This eliminates the need for additional gearing components, simplifies the design, and reduces assembly time and costs. The integrated gear mechanism allows for torque transmission and rotational control, enabling precise and controlled motion without the need for external gearing systems.
  • Backlash Control: Slewing rings can be designed with minimal backlash, ensuring precise motion control. Backlash refers to the play or clearance between mating gears or components, which can lead to lost motion or inaccuracies in positioning. By minimizing backlash, slewing rings offer improved accuracy and repeatability in motion control applications.
  • Versatility and Customization: Slewing rings are highly versatile and can be customized to meet specific application requirements. They can be tailored in terms of dimensions, load capacity, mounting interfaces, gear specifications, sealing systems, and materials. This versatility allows slewing rings to be optimized for various industries and applications, ensuring the best performance and compatibility.
  • Durable and Low Maintenance: Slewing rings are designed to be durable and require minimal maintenance. They are constructed with high-quality materials, precision manufacturing, and appropriate sealing systems to withstand harsh operating conditions and contaminants. This durability and low maintenance requirement contribute to the long service life and reliability of slewing rings.

Overall, slewing rings offer advantages such as compact design, high load-carrying capacity, smooth rotation, integrated gear mechanism, backlash control, versatility, customization options, and durability. These advantages make slewing rings a preferred choice in various applications, including construction machinery, material handling equipment, cranes, wind turbines, robotics, and manufacturing systems.

China Professional Swing Circle Zx160 with Inner Gear Excavator Slewing Ring Bearing in Stock  China Professional Swing Circle Zx160 with Inner Gear Excavator Slewing Ring Bearing in Stock
editor by Dream 2024-05-16

China supplier Outer Gear Turntable Bearing Slewing Ring for Excavator

Product Description

Slewing ring bearing is also called slewing ring, slewing bearing, turntable bearing, and rotary bearing. 
Slewing ring bearing is a bearing that able to bear axial load, radial load and overturning torque. Under normal circumstances, slewing ring bearings have their own mounting holes, lubricant holes and seal holes, to meet the different needs of the various host working under the various conditions; 
On the other hand, slewing ring bearing itself has characteristics of compact structure, guide rotating convenient, easy to install and maintaining easily. 
2. Structure
2.1 Slewing ring bearings have different types as per different structures, here below is what we offering now: 
Single row ball slewing ring bearings 
Double row ball slewing ring bearings
Crossed roller slewing ring bearings 
Three row roller slewing ring bearings 
Flange slewing ring bearings
2.2 The above slewing ring bearings can also be divided into 3 different types as per different transmissions:
Slewing ring bearings with no gear
Slewing ring bearings with external gear
Slewing ring bearings with internal gear
3. Features: 
Slewing ring bearings have more features: compact structure, reliable guide, simple installation, and easily maintenance
 
4. Application: 
Slewing ring bearings can be widely used in lifting & transport machinery, mining machinery, construction machinery, port hoisting machinery, port oil transfer equipment, onshore and offshore crane, excavator, concrete machine, paper machine, plastic and rubber machine, weave machine, steel plant, electronic power plant, wind power generator, other construction and industry machines or equipments and other large rotary device
Single row ball slewing ring bearing:

1.Slewing bearing is also called slewing ring, slewing ring bearing, turntable bearing, and rotary bearing. 
The single row ball slewing ring bearing is composed of 2 seat-rings. The balls contact with the circular race at 4 points, via which the axial force, radial force and resultant moment may be born simultaneously.

2.2. Structure
Slewing ring bearings have different types as per different structures, here below is what we offering now:
Single row ball slewing bearing has 3 different types:
Single row ball slewing bearing with no gear 
Single row ball slewing bearing with external gear 
Single row ball slewing bearing with internal gear 
Single row ball slewing ring bearing
1.Slewing bearing is also called slewing ring, slewing ring bearing, turntable bearing, and rotary bearing. 
The single row ball slewing ring bearing is composed of 2 seat-rings. The balls contact with the circular race at 4 points, via which the axial force, radial force and resultant moment may be born simultaneously.
 
2. Structure
 
Slewing ring bearings have different types as per different structures, here below is what we offering now:
Single row ball slewing bearing has 3 different types:
Single row ball slewing bearing with no gear 
Single row ball slewing bearing with external gear 
Single row ball slewing bearing with internal gear 

3. Features
Single row ball slewing ring bearings have following features:
Compact in structure and light in weight.
 
4. Application: 
Single row ball slewing ring bearings are widely used in slewing conveyers, welding arm and positioned, medium duty cranes, excavators and other engineering machines
Double row ball slewing ring bearing:
1.Slewing bearing is also called slewing ring, slewing ring bearing, turntable bearing, and rotary bearing. 
The double row ball slewing bearing has 3 seat-rings. The steel balls and the retainers may be directly arranged into the upper and lower racers. Two rows of steel balls with different diameters are fitted according to the force. Such open type fitting is extraordinary convenient, the loading angels at upper and lower races are 90°which can carry both of the axial force and capsizing moment. When the radial force is larger than 1/10 of the axial force, the races should be newly designed.
 
2. Structure:
Double row ball slewing bearing has 3 different types:
Double row ball slewing bearing with no gear
Double row ball slewing bearing with external gear 
Double row ball slewing bearing with internal gear 
 
3. Features:
Double row ball slewing ring bearings have following features:
Larger dimension of axial and radial and compact structure.
 
4. Application:
Double row ball slewing ring bearings are widely used in Tower cranes which require working radius over medium range, auto crane and loading (unloading) machinery.
 Double row ball slewing ring bearing:
1.Slewing bearing is also called slewing ring, slewing ring bearing, turntable bearing, and rotary bearing. 
The double row ball slewing bearing has 3 seat-rings. The steel balls and the retainers may be directly arranged into the upper and lower racers. Two rows of steel balls with different diameters are fitted according to the force. Such open type fitting is extraordinary convenient, the loading angels at upper and lower races are 90°which can carry both of the axial force and capsizing moment. When the radial force is larger than 1/10 of the axial force, the races should be newly designed.
 
2. Structure:
Double row ball slewing bearing has 3 different types:
Double row ball slewing bearing with no gear
Double row ball slewing bearing with external gear 
Double row ball slewing bearing with internal gear 

3. Features:
Double row ball slewing ring bearings have following features:
Larger dimension of axial and radial and compact structure.
 
4. Application:
Double row ball slewing ring bearings are widely used in Tower cranes which require working radius over medium range, auto crane and loading (unloading) machinery.
Crossed roller slewing ring bearing
1.Slewing bearing is also called slewing ring, slewing ring bearing, turntable bearing, and rotary bearing. 
With the cross roller Ring, cylindrical rollers are arranged crosswise, with each roller perpendicular to the adjacent roller, in a 90° groove, separated from each other by a spacer retainer.  This design allows just 1 bearing to receive loads in all directions including, radial, axial and moment loads. Since the Cross-Roller Ring achieves high rigidity despite the minimum possible dimensions of the inner and outer rings, it is optimal for applications such as joints and swiveling units of industrial robots, swiveling tables of machining centers, rotary units of manipulators, precision rotary tables, medical equipment, measuring instruments and IC manufacturing machines.
 
2. Structure:
Cross roller slewing bearing has 3 different types:
Cross roller ball slewing bearing with no gear 
Cross roller ball slewing bearing with external gear 
Cross roller ball slewing bearing with internal gear 

3. Features
Cross roller slewing ring bearings have following features:
1. High precision: cross roller bearings can be made high precision bearings, at P4, P2.
2. High rigidity: These series roller bearings are with preload.
3. High load capacity: This series roller bearing can support axial load, radial load, and tilting load.
4. Small volume: this series roller bearing can save space for the machine.
 
4. Application 
Cross roller slewing rings are widely applied in the precision rotary table, rotary joint of manipulator, medical equipment, and measuring instrument etc
Triple row roller slewing ring bearing 
1.Slewing bearing is also called slewing ring, slewing ring bearing, turntable bearing, and rotary bearing. 
Three row roller slewing ring bearing has 3 seat-rings, which separate the upper, lower and radial raceway, via which the load of each row of the rollers may be specified. Thus it can carry different load simultaneously and its load capacity is the largest 1 of the 4 types
 
2. Structure:
Triple row roller slewing bearing has 3 different types:
Triple row roller slewing bearing with no gear
Triple row roller slewing bearing with external gear 
Triple row roller slewing bearing with internal gear 
 
3. Features   
Triple row roller slewing ring bearings have following features:
Larger axial and radial dimension, compact structure
 
4. Application
Triple row roller slewing rings are widely used in heavy-duty machines which require large working radius, such as bucket-wheel excavators, wheeled cranes, ship cranes, ladle turret, auto cranes etc.
 
Flange Slewing Bearing
1.Slewing bearing is also called slewing ring, slewing ring bearing, turntable bearing, and rotary bearing. 
Flange slewing bearing is a special slewing ring bearing, it can have 1 flange in the outer ring, or 1 flange in the inner ring, even it can have 1 flange in both inner ring and outer ring.
 
2. Structure:
Flange slewing bearing has 3 different types:
Flange slewing bearing with no gear
Flange slewing bearing with external gear 
Flange slewing bearing with internal gear 
 
3. Features   
Flange slewing bearings have following features:
Compact structure and easily installment.
 
4. Application
Flange slewing bearings are widely used in tow truck, and other applications are the same as slewing bearings, such as lifting & transport machinery, mining machinery, construction machinery, excavator, concrete machine, paper machine, plastic and rubber machine and steel plant.
 
Excavator Slewing Bearing
Excavator slewing bearing is a special slewing ring bearing as per its applications. And it is a very important part for excavators, we can supply excavator slewing bearings for both second-hand excavators for maintenance and new excavators.
 
2. Structure:
Excavator slewing bearing are usually made as per single row ball slewing bearing structure, and most of them are internal gear types, but some are external gear types.
 
3. Features   
Excavator slewing bearings have familiar features as single row ball slewing ring bearings.
Compact structure, light weight and easily installment.
 
4. Application
Excavator slewing bearings are widely used for all brands of excavators, such as,Hitachi, Kobelco, Sumitomo, Doosan, Hyundai, Samsung, Daewoo, Kato, CHINAMFG and so on.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Vacuum, Antimagnetic, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Spherical Raceway
Material: Bearing Steel
Samples:
US$ 1/Set
1 Set(Min.Order)

|

Customization:
Available

|

Can you provide examples of products or machinery that commonly use slewing rings?

Slewing rings are widely used in various industries and play a vital role in the functioning of numerous products and machinery. They offer rotational support, precise motion control, and load-bearing capabilities. Here are some examples of products or machinery that commonly utilize slewing rings:

  • Construction Machinery: Slewing rings are extensively used in construction machinery such as excavators, cranes, concrete pumps, and tower cranes. They enable the rotation and movement of the boom, arm, and bucket, allowing for precise control during digging, lifting, and material placement operations.
  • Material Handling Equipment: Slewing rings are essential components in material handling equipment like forklifts, stackers, and reach stackers. They facilitate the rotation and swiveling of the mast or boom, enabling efficient loading, unloading, and stacking of goods in warehouses, logistics centers, and ports.
  • Wind Turbines: Slewing rings are crucial in wind turbines, where they support the yaw and pitch mechanisms. The yaw system allows the turbine to rotate and face the wind direction, while the pitch system adjusts the angle of the blades for optimal wind capture. Slewing rings enable precise and controlled movement, ensuring efficient wind energy conversion.
  • Cranes: Various types of cranes, including mobile cranes, crawler cranes, and tower cranes, rely on slewing rings for their rotation and lifting capabilities. Slewing rings support the crane’s superstructure, allowing it to rotate horizontally, and provide stability and load-bearing capacity during lifting operations.
  • Rotary Drilling Rigs: Slewing rings are commonly used in rotary drilling rigs for oil and gas exploration, foundation construction, and mining operations. They enable the rotation and positioning of the drill mast, allowing for precise drilling and borehole creation.
  • Railway Equipment: Slewing rings find application in railway equipment such as rail cranes, railway maintenance machines, and turntables. They facilitate the rotation and movement of equipment, ensuring efficient maintenance, repairs, and track positioning.
  • Robotics: Slewing rings are integral to robotic systems, including industrial robots, robotic arms, and robotic welding systems. They enable the rotational movement and articulation of the robot’s joints, allowing for precise and controlled manipulation in manufacturing, assembly, and automation processes.
  • Solar Tracking Systems: Slewing rings are employed in solar tracking systems to orient solar panels toward the sun. They enable the rotation and tilting of the panels, maximizing solar energy absorption and optimizing power generation in solar farms and photovoltaic systems.
  • Turntables and Rotating Platforms: Slewing rings are used in turntables and rotating platforms found in various applications. They support the rotational movement of entertainment stages, amusement park rides, revolving restaurants, and display platforms in trade shows or exhibitions.

These are just a few examples of the diverse range of products and machinery that commonly utilize slewing rings. Their ability to provide rotational support, precise motion control, and load-bearing capabilities makes them indispensable components in numerous industries, including construction, material handling, energy, transportation, robotics, and entertainment.

Can you provide insights into the importance of proper installation and alignment of slewing rings?

Proper installation and alignment of slewing rings are of utmost importance for ensuring optimal performance, longevity, and safety of rotating systems. Here’s a detailed explanation of the importance of proper installation and alignment of slewing rings:

  • Load Distribution: Correct installation and alignment of slewing rings ensure proper load distribution across the rolling elements and raceways. When a slewing ring is improperly installed or misaligned, excessive loads may be concentrated on specific areas, leading to accelerated wear, premature failure, and reduced load-bearing capacity. Proper alignment helps distribute loads evenly, maximizing the life expectancy of the slewing ring.
  • Smooth Operation: Accurate installation and alignment contribute to the smooth operation of rotating systems. Misalignment can result in increased friction, uneven motion, vibrations, and noise. These issues not only reduce efficiency but also impact the overall performance and reliability of the system. Proper alignment minimizes friction and ensures smooth and precise rotational movement, enhancing the system’s efficiency and productivity.
  • Reduced Wear and Tear: Improper installation or misalignment can cause excessive wear and tear on the slewing ring and associated components. Misalignment can lead to increased rolling element and raceway stresses, resulting in accelerated fatigue and surface damage. By achieving proper alignment, the slewing ring operates within its designed parameters, reducing wear and extending its operational life.
  • Optimized Performance: Proper installation and alignment directly impact the performance of rotating systems. Accurate alignment ensures that components such as gears, motors, and drive systems mesh correctly with the slewing ring. This alignment facilitates efficient power transmission, reduces energy losses, and improves the overall performance and responsiveness of the system.
  • Prevention of Structural Damage: Misalignment of slewing rings can exert excessive forces on the supporting structure or adjacent components. Over time, these forces can cause structural damage, misalignment in other parts of the system, or even equipment failure. Proper installation and alignment help prevent such structural damage, ensuring the integrity and longevity of the entire system.
  • Safety Considerations: Correct installation and alignment of slewing rings are crucial for safety in rotating systems. Misalignment can lead to unexpected movements, uncontrolled motion, or component failure, posing a risk to personnel, equipment, and the surrounding environment. Proper alignment reduces the likelihood of accidents, improves operational safety, and ensures compliance with safety regulations.
  • Ease of Maintenance: Properly aligned slewing rings are easier to maintain and service. Routine maintenance tasks such as lubrication, inspection, and replacement of components can be performed more efficiently when the slewing ring is correctly installed and aligned. This reduces downtime, extends maintenance intervals, and improves the overall operational efficiency of the system.

In summary, proper installation and alignment of slewing rings are critical for achieving optimal performance, reliability, and safety in rotating systems. Accurate alignment ensures load distribution, smooth operation, reduced wear, optimized performance, prevention of structural damage, enhanced safety, and ease of maintenance. It is essential to follow manufacturer guidelines, industry standards, and best practices to ensure the correct installation and alignment of slewing rings, maximizing their operational lifespan and the efficiency of the entire system.

How does the choice of slewing rings affect the overall performance and reliability of rotating systems?

The choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. The selection of the appropriate slewing ring involves considering various factors such as load capacity, operating conditions, precision requirements, and application-specific needs. Here’s a detailed explanation of how the choice of slewing rings affects the overall performance and reliability of rotating systems:

  • Load Capacity: The load capacity of the slewing ring is a critical factor in determining the performance and reliability of the rotating system. Choosing a slewing ring with an adequate load capacity ensures that the system can handle the expected loads without excessive stress or deformation. If the selected slewing ring has insufficient load capacity for the application, it can lead to premature failure, increased wear, and compromised reliability.
  • Operating Conditions: The operating conditions, including factors such as temperature, humidity, dust, and exposure to corrosive substances, influence the choice of slewing rings. It is essential to select a slewing ring that is designed to withstand the specific environmental conditions of the application. Failure to consider the operating conditions can result in accelerated wear, corrosion, reduced performance, and decreased reliability of the rotating system.
  • Precision Requirements: Some applications require high precision and accuracy in the movement and positioning of the rotating system. The choice of slewing ring with appropriate precision is crucial to meet these requirements. Slewing rings designed for precision applications incorporate features such as high-precision raceways, gear teeth, or preloading mechanisms. Selecting a slewing ring with inadequate precision can lead to inaccuracies, positioning errors, and compromised performance of the rotating system.
  • Material Selection: The choice of materials for the slewing ring affects its durability, resistance to wear, and overall reliability. Different materials, such as carbon steel, stainless steel, or specialized alloys, have varying properties and performance characteristics. The selection of the appropriate material depends on factors such as load requirements, operating conditions, and the presence of corrosive or abrasive elements. Choosing the wrong material can result in premature wear, reduced lifespan, and compromised reliability of the rotating system.
  • Sealing and Lubrication: Slewing rings require proper sealing and lubrication to ensure smooth operation and prevent contamination or inadequate lubrication. The choice of slewing rings with effective sealing mechanisms and suitable lubrication requirements is crucial for maintaining performance and reliability. Inadequate sealing or improper lubrication can lead to increased friction, accelerated wear, and decreased reliability of the rotating system.
  • Manufacturer and Quality: The choice of a reputable manufacturer and high-quality slewing rings is essential for ensuring reliability and performance. Reliable manufacturers adhere to stringent quality control processes, use advanced manufacturing techniques, and provide comprehensive technical support. Choosing slewing rings from trusted manufacturers reduces the risk of premature failures, ensures consistent performance, and enhances the overall reliability of the rotating system.

In summary, the choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. Considering factors such as load capacity, operating conditions, precision requirements, material selection, sealing and lubrication, and the reputation of the manufacturer helps in selecting the appropriate slewing rings. By making the right choice, the rotating system can operate efficiently, withstand expected loads, maintain precision, and provide reliable performance throughout its lifespan.

China supplier Outer Gear Turntable Bearing Slewing Ring for Excavator  China supplier Outer Gear Turntable Bearing Slewing Ring for Excavator
editor by Dream 2024-05-07

China manufacturer Internal Gear Slewing Bearing Slewing Ring 21m-25-11100 for Excavator PC600-7

Product Description

1. Company introduction 

HangZhou King Slewing Bearing Technology Co.,Ltd.is a professional manufacturer and exporter of excavator slewing rings, its factory is located in HangZhou city, ZheJiang Province,very close to ZheJiang Port, goods can be easily transported all over the world.

Our main product is excavator slewing rings, we can now produce more than 1000 part numbers to match with many famous excavator brands, such as CATERPILLAR, KOMATSU, HITACHI, KOBELCO, HYUNDAI, VOLVO, DOOSAN, LIEBHERR, DAEWOO, JCB,CASE, SUMITOMO, KATO,etc. 

Our engineers have more than 20 years rich experience in studying excavator slewing rings and we have professional measuring team can go to customers ‘ workplace  to measure the old or broken slewing rings, then to produce the same replacements. We have our own factory with latest CNC machines , such as vertical lathes, gear hobbing machines, gear shaping machines, hole drilling mahines, quenching machines, vertical grinding machines, turning machines,etc. to meet customers’ quick delivery requirements. 

We will adhere to the “quality first, credibility first” business philosophy and continually provide our clients with superior quality products and services. We warmly welcome customers from all over the world to visit us and together to build a better future !

2. Our slewing rings can match with more than 1000 excavator models. 

3. Our excavator part numbers as below:

Excavator model number Part number Excavator model number Part number
PC15   20M-25-81201 PC240-8 206-25-00301
PC18  20M-25-81201 PC270   206-25-00400
PC75UU-2   201-25-61100 PC290   206-25-00400
PC100-6 203-25-62100 PC300 207-25-31112
PC110R  206-25-11100 PC300-3  207-25-00571
PC120-5   203-25-51200 PC300-6   207-25-61100
PC120-6Z  203-25-61100 PC300-7   207-25-61100
PC120-6 203-25-62100  PC300-7      207-25-61700
PC130-6        203-25-62100 PC300LC-5    207-25-51100
PC130-7     SAA4D95L PC300LC-6    207-25-61100
PC150LCK-6   21P-25-K1100 PC300LC-7    207-25-61100
PC160-6K  21P-25-K1100 PC300-8 207-25-61100
PC160-7    21K-25-5711 PC300-8   207-25-00121
PC200   205-25-00015 PC340   207-25-61200
PC210NlC-7K    20Y-25-00301 PC380LC-6K 207-25-61200
PC200-5 20Y-25-11103 PC400-7 208-25-61100
PC200-8   206-25-5710 PC400LC-5     208-25-52101
PC200-6      20Y-25-25710     PC400LC-5    208-25-52100
PC200-6Z   20Y-25-22200 PC400LC-5    208-25-52101
PC200-6     S6D102-1 PC400LC-5    208-25-A2100
PC200-7    20Y-25-21200 PC400LC-6    208-25-61100
PC220-7     120Y-25-21300 PC400   208-25-61100
PC200LC-7 20Y-25-21200 PC450LC-6K  208-25-61100
PC220    205-25-00571 PC450-8 208-25-71230
PC220LC-6LE     20Y-25-A1101 PC450-8 207-25-31180
PC220-6  20Y-25-21200 PC450-8 208-25-61100 
PC220-6  20Y-25-21100 PC600-7   21M-25-11100
PC220-7  206-25-00301  pc600-7 21M-25-11102
PC220-8  206-25-00320 PC600LC-6   21M-25-11100
PC220LC-8   206-25-00301 PC600LC-8       21M-25-11101
PC228US-3 22U-25-5711 PC750    209-25-71100 
PC228  22U-25-05710 PC800LC-8  209-25-5712
PC228  22U-25-05710 PC800-6  209-25-5711
PC-228-USLC-2 22U-25-11102 PC1250  21N-25-5711
PC240-3  205-25-0571  PC2000  
PC240-7      206-25-00301    

4. Our excavator slewing ring pictures

5. Our slewing bearing packaging pictures 

6. Transportation way: By sea/ air/ rail/ road/ TNT/DHL/UPS/Fedex,ect. 

7. Contact information

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: Short Delivery Time
Sealing Gland: We Use Seal Rings
Rolling-Element Number: Single Row, Three Row for Huge Slewing Bearing
Roller Type: Four Point Contact
Material: Alloy Steel
Customization:
Available

|

What are the signs that indicate a need for slewing ring replacement or maintenance, and how can they be diagnosed?

When it comes to slewing rings, certain signs indicate the need for replacement or maintenance to ensure optimal performance and prevent potential failures. Here’s a detailed explanation of the signs that indicate a need for slewing ring replacement or maintenance, along with methods for diagnosis:

  • Unusual Noise: Unusual noises, such as grinding, clicking, or squealing sounds, during the operation of rotating systems may indicate a problem with the slewing ring. These noises can be caused by worn-out or damaged rolling elements, insufficient lubrication, misalignment, or other issues. Diagnosis involves conducting a thorough inspection of the slewing ring and its components to identify the source of the noise and determine the appropriate course of action.
  • Abnormal Vibration: Excessive vibration during the operation of rotating systems can be a warning sign of a faulty slewing ring. It may indicate misalignment, imbalanced loads, damaged rolling elements, or worn-out bearings. Vibration analysis techniques, such as using vibration sensors or analyzers, can help diagnose the source and severity of the vibration. Based on the analysis results, appropriate maintenance or replacement actions can be taken.
  • Irregular Movement: Any irregular movement or jerking motion of the rotating system can be an indication of a problem with the slewing ring. It may be caused by damaged or worn-out teeth on the slewing ring, misalignment, or inadequate lubrication. Visual observation of the system’s movement during operation can help identify any irregularities. Additionally, conducting a detailed inspection of the slewing ring and its teeth can provide further insight into the issue.
  • Increased Friction: If there is a noticeable increase in friction or resistance during the rotation of the system, it could be a sign of a problem with the slewing ring. This may be due to insufficient or contaminated lubrication, damaged rolling elements, or misalignment. Diagnosis involves checking the lubrication levels and quality, inspecting the rolling elements for signs of damage, and verifying the alignment of the slewing ring.
  • Uneven or Excessive Wear: Visual inspection of the slewing ring can reveal signs of uneven or excessive wear. This can manifest as worn-out or pitted rolling elements, damaged or missing teeth, or abnormal wear patterns on the raceways. Regular inspections and comparing the current condition with the manufacturer’s specifications or previous inspection records can help diagnose the level of wear and determine if maintenance or replacement is necessary.
  • Leakage or Contamination: Leakage of lubricant or the presence of contaminants, such as dirt, water, or debris, in the slewing ring assembly can be indicative of a problem. It may lead to inadequate lubrication, accelerated wear, or corrosion. Visual inspection of the slewing ring and any associated seals or gaskets can help identify any signs of leakage or contamination. Addressing the source of the leakage and ensuring proper sealing is essential to maintain the integrity and performance of the slewing ring.
  • Reduced Load-Carrying Capacity: If the rotating system experiences difficulty in handling its intended loads or shows signs of decreased load-carrying capacity, it may indicate an issue with the slewing ring. Factors such as worn-out rolling elements, damaged raceways, or misalignment can contribute to the reduction in load-carrying capacity. Performance testing and comparing the system’s current capabilities with its original specifications can help diagnose any loss in load-carrying capacity.

In summary, signs that indicate a need for slewing ring replacement or maintenance include unusual noise, abnormal vibration, irregular movement, increased friction, uneven or excessive wear, leakage or contamination, and reduced load-carrying capacity. These signs can be diagnosed through visual inspections, vibration analysis, performance testing, and comparing the observed conditions with the manufacturer’s specifications. Early detection and timely maintenance or replacement of the slewing ring can prevent further damage, ensure safe operation, and extend the lifespan of the rotating system.

How does the choice of materials impact the performance of slewing rings in different environments?

The choice of materials significantly impacts the performance of slewing rings in different environments. The selection of appropriate materials ensures the desired strength, durability, corrosion resistance, and overall reliability of the slewing rings. Here’s a detailed explanation of how the choice of materials impacts the performance of slewing rings in different environments:

  • Corrosion Resistance: Different environments may expose slewing rings to corrosive elements such as moisture, chemicals, or saltwater. Choosing materials with high corrosion resistance, such as stainless steel or corrosion-resistant alloys, helps protect the slewing rings from chemical reactions and rust formation. Corrosion-resistant materials ensure the longevity and reliability of slewing rings, especially in marine, offshore, or chemical industry applications.
  • Temperature Resistance: Environmental conditions, such as extreme temperatures or thermal cycling, can affect the performance of slewing rings. Materials that exhibit excellent temperature resistance, such as heat-treated steels or specialized alloys, are crucial in applications where slewing rings are exposed to high or low temperatures. These materials maintain their mechanical properties and dimensional stability, ensuring reliable performance even in demanding temperature environments.
  • Wear and Fatigue Resistance: In applications with high loads, repetitive movements, or abrasive environments, slewing rings may experience wear and fatigue. Choosing materials with high wear resistance, such as hardened steels or materials with specialized coatings, minimizes surface damage and extends the service life of the slewing rings. These materials can withstand the repetitive stresses and abrasive conditions, reducing the risk of premature failure.
  • Weight Considerations: In certain applications, weight is a critical factor. Slewing rings that are used in lightweight or mobile equipment may require materials that offer a balance between strength and weight. Lightweight materials like aluminum or high-strength composites can be suitable choices to reduce the overall weight of the slewing rings and improve the efficiency and maneuverability of the equipment.
  • Load Capacity: The choice of materials affects the load-carrying capacity of slewing rings. Materials with high tensile strength and fatigue resistance, such as specialized steels or alloys, enhance the load-bearing capabilities of the slewing rings. The selection of materials with appropriate mechanical properties ensures that the slewing rings can handle the required loads without deformation or failure.
  • Compatibility with Lubricants: Lubrication is essential for smooth operation and reduced friction in slewing rings. The choice of materials should consider their compatibility with the lubricants used in the specific environment. Certain materials may be more compatible with certain types of lubricants, ensuring optimal lubrication and minimizing wear and friction.
  • Electrical Conductivity: In applications where electrical conductivity is required, such as in certain industrial or robotic systems, materials with appropriate electrical conductivity properties may be necessary. Copper or specific alloys can be chosen to provide the desired electrical conductivity while maintaining the mechanical integrity of the slewing rings.

By selecting the appropriate materials based on the environmental conditions and specific application requirements, the performance and reliability of slewing rings can be optimized. Manufacturers and engineers consider factors such as corrosion resistance, temperature resistance, wear resistance, weight considerations, load capacity, lubricant compatibility, and electrical conductivity to determine the most suitable materials for slewing rings in different environments.

How do electronic or computer-controlled components integrate with slewing rings in modern applications?

In modern applications, electronic or computer-controlled components are often integrated with slewing rings to enhance functionality, precision, and automation. This integration allows for advanced control, monitoring, and optimization of rotating systems. Here’s a detailed explanation of how electronic or computer-controlled components integrate with slewing rings in modern applications:

  • Sensor Integration: Electronic sensors can be integrated with slewing rings to provide real-time feedback and data on various parameters. For example, position sensors can be used to accurately track the position and angle of the slewing ring, enabling precise control and positioning of the rotating components. Load sensors can measure the load applied to the slewing ring, allowing for dynamic load monitoring and optimization.
  • Control Systems: Computer-controlled components, such as programmable logic controllers (PLCs) or microcontrollers, can be used to manage the operation of slewing rings. These control systems can receive input from sensors and execute algorithms to control the speed, direction, and positioning of the slewing ring. By integrating electronic control systems, precise and automated control of the slewing ring can be achieved, improving efficiency and reducing human error.
  • Automation and Synchronization: In modern applications, slewing rings are often integrated into automated systems where they work in synchronization with other components. Electronic or computer-controlled components can facilitate this synchronization by coordinating the movements of multiple slewing rings or integrating them with other automated processes. This integration enables seamless and optimized operation of the rotating system as a whole.
  • Data Monitoring and Analysis: Electronic components can be used to collect and analyze data from slewing rings. This data can include parameters such as position, speed, temperature, and load. By monitoring and analyzing this data, it is possible to identify patterns, detect anomalies, and optimize the performance of the slewing rings. This information can be used for predictive maintenance, energy optimization, and performance improvement.
  • Communication and Networking: Electronic components enable communication and networking capabilities for slewing rings. They can be connected to a network or interface with other control systems, allowing for remote monitoring, control, and integration into larger systems. This enables centralized monitoring and control of multiple rotating systems, facilitating efficient operation and maintenance.
  • Feedback and Safety Systems: Electronic components can provide feedback and safety features in slewing ring applications. For example, limit switches or proximity sensors can detect the end positions of the slewing ring’s rotation and trigger safety mechanisms or control actions accordingly. This ensures safe operation, prevents over-rotation, and protects the equipment and personnel.

By integrating electronic or computer-controlled components with slewing rings, modern applications can achieve enhanced control, precision, automation, and data-driven optimization. This integration allows for efficient operation, improved safety, accurate positioning, synchronization with other systems, and the ability to adapt to changing operational requirements. It paves the way for advanced technologies such as robotics, Internet of Things (IoT), and Industry 4.0, where slewing rings play a vital role in the seamless integration of mechanical and electronic systems.

China manufacturer Internal Gear Slewing Bearing Slewing Ring 21m-25-11100 for Excavator PC600-7  China manufacturer Internal Gear Slewing Bearing Slewing Ring 21m-25-11100 for Excavator PC600-7
editor by Dream 2024-05-03

China Custom Professional Slewing Bearing External Gear Slewing Rings for Ex210lch-5 Excavator

Product Description

1. Product Description
 

Material 42CrMo or 50Mn
Delivery Time 15 Days
Transport By sea, by air, by railway, by express
Warranty Period 18 Months
Package Wooden Box
Payment T/T , Western Union, Paypal

2. Product show

3. Company profile

HangZhou King Slewing Bearing Technology Co., Ltd. is a specialized manufacturer and exporter for excavator and crane slewing bearings. The company occupies the workshop area of 6,000m2, offering a variety of models which can meet your various demands. We own a specialized team in R&D and manufacturing the slewing bearing for many years. We can make more than 1000 models of slewing bearings to match famous excavator and crane brands, such as, HITACHI, KOBELCO, HYUNDAI, VOLVO, DOOSAN, LIEBHERR, DAEWOO, JCB,CASE, SUMITOMO, KATO, etc.

We have strong production facilities and complete process for making slewing bearings, such as  CNC machines , vertical lathes, gear hobbing machines, gear shaping machines, hole drilling machines, quenching equipment, vertical grinding machines, turning machines, etc. We adhere to ISO9000 quality system management standards and strictly execute the mechanical standard of the domestic and international standards of the products.
Our products are supplied for the following brands:

4. Our slewing rings can match with more than 1000 excavator models. 

5. Excavator part numbers as below:

 

 

Hitachi Slewing Ring Replacement 
Excavator model number Part number Excavator model number Part number
EX60-2 4193433 ZX230    9154037
EX60WD -2 4193433 ZX230    9159646
EX60-5 43767553 ZX240 9196732
EX100 9098995 ZX240   9245728
EX100-3 9157126 EX300-3    9112188
ZX135 9184497 ZX330LC-5G 9245698
EX150-5 9146953 ZX350-3  9245698
EX200 9098993 ZX370  9166468
ZX200LC-5G 926571  ZX370 9169894
ZX200-3, 926571  KH180-3   957174
EX200-3  9148123 HE6571B 1214DBS110T
ZX200  9196732 EX400 164-2568
ZX200-5G 926571 EX400-5  9129521
EX200   9157127 ZX450  9129521
EX210-5  9157127 ZX450-3       9247287
ZX210LCK   9169646 ZX450-3 9247287
ZX210W-1  9275368 ZX470-3  9247287
ZX220 9262248 ZX650   9321213
EX220-1   9154037 ZX650LCH  6016584
ZX225USR 9169646 ZX800LD    9229741
ZX225US  9196732 ZX870-3 9321216
ZX330-3LC 926571 ZX870 6571643
EX270-5 9154037    

 6. Our machine tools

7. Packaging by wooden box

8. Transportation way: By sea/ air/ rail/ road/ TNT/DHL/UPS/Fedex,ect. 

9. Contact information

Company: HangZhou King Slewing Bearing Technology Co.,Ltd
Address: CHINAMFG Xinzhan CHINAMFG Science and Technology Park, Xinzhan District, HangZhou, ZheJiang Province
Contact person: Amy Sun
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Type: Internal Gear
Hardness: 229-269
Delivery Time: 15 Days
Heat Treatment: Q+T
Warranty: 18 Months
Samples:
US$ 700/Set
1 Set(Min.Order)

|

Customization:
Available

|

Can you provide insights into the importance of proper installation and alignment of slewing rings?

Proper installation and alignment of slewing rings are of utmost importance for ensuring optimal performance, longevity, and safety of rotating systems. Here’s a detailed explanation of the importance of proper installation and alignment of slewing rings:

  • Load Distribution: Correct installation and alignment of slewing rings ensure proper load distribution across the rolling elements and raceways. When a slewing ring is improperly installed or misaligned, excessive loads may be concentrated on specific areas, leading to accelerated wear, premature failure, and reduced load-bearing capacity. Proper alignment helps distribute loads evenly, maximizing the life expectancy of the slewing ring.
  • Smooth Operation: Accurate installation and alignment contribute to the smooth operation of rotating systems. Misalignment can result in increased friction, uneven motion, vibrations, and noise. These issues not only reduce efficiency but also impact the overall performance and reliability of the system. Proper alignment minimizes friction and ensures smooth and precise rotational movement, enhancing the system’s efficiency and productivity.
  • Reduced Wear and Tear: Improper installation or misalignment can cause excessive wear and tear on the slewing ring and associated components. Misalignment can lead to increased rolling element and raceway stresses, resulting in accelerated fatigue and surface damage. By achieving proper alignment, the slewing ring operates within its designed parameters, reducing wear and extending its operational life.
  • Optimized Performance: Proper installation and alignment directly impact the performance of rotating systems. Accurate alignment ensures that components such as gears, motors, and drive systems mesh correctly with the slewing ring. This alignment facilitates efficient power transmission, reduces energy losses, and improves the overall performance and responsiveness of the system.
  • Prevention of Structural Damage: Misalignment of slewing rings can exert excessive forces on the supporting structure or adjacent components. Over time, these forces can cause structural damage, misalignment in other parts of the system, or even equipment failure. Proper installation and alignment help prevent such structural damage, ensuring the integrity and longevity of the entire system.
  • Safety Considerations: Correct installation and alignment of slewing rings are crucial for safety in rotating systems. Misalignment can lead to unexpected movements, uncontrolled motion, or component failure, posing a risk to personnel, equipment, and the surrounding environment. Proper alignment reduces the likelihood of accidents, improves operational safety, and ensures compliance with safety regulations.
  • Ease of Maintenance: Properly aligned slewing rings are easier to maintain and service. Routine maintenance tasks such as lubrication, inspection, and replacement of components can be performed more efficiently when the slewing ring is correctly installed and aligned. This reduces downtime, extends maintenance intervals, and improves the overall operational efficiency of the system.

In summary, proper installation and alignment of slewing rings are critical for achieving optimal performance, reliability, and safety in rotating systems. Accurate alignment ensures load distribution, smooth operation, reduced wear, optimized performance, prevention of structural damage, enhanced safety, and ease of maintenance. It is essential to follow manufacturer guidelines, industry standards, and best practices to ensure the correct installation and alignment of slewing rings, maximizing their operational lifespan and the efficiency of the entire system.

What are the signs that indicate a need for slewing ring replacement or maintenance, and how can they be diagnosed?

When it comes to slewing rings, certain signs indicate the need for replacement or maintenance to ensure optimal performance and prevent potential failures. Here’s a detailed explanation of the signs that indicate a need for slewing ring replacement or maintenance, along with methods for diagnosis:

  • Unusual Noise: Unusual noises, such as grinding, clicking, or squealing sounds, during the operation of rotating systems may indicate a problem with the slewing ring. These noises can be caused by worn-out or damaged rolling elements, insufficient lubrication, misalignment, or other issues. Diagnosis involves conducting a thorough inspection of the slewing ring and its components to identify the source of the noise and determine the appropriate course of action.
  • Abnormal Vibration: Excessive vibration during the operation of rotating systems can be a warning sign of a faulty slewing ring. It may indicate misalignment, imbalanced loads, damaged rolling elements, or worn-out bearings. Vibration analysis techniques, such as using vibration sensors or analyzers, can help diagnose the source and severity of the vibration. Based on the analysis results, appropriate maintenance or replacement actions can be taken.
  • Irregular Movement: Any irregular movement or jerking motion of the rotating system can be an indication of a problem with the slewing ring. It may be caused by damaged or worn-out teeth on the slewing ring, misalignment, or inadequate lubrication. Visual observation of the system’s movement during operation can help identify any irregularities. Additionally, conducting a detailed inspection of the slewing ring and its teeth can provide further insight into the issue.
  • Increased Friction: If there is a noticeable increase in friction or resistance during the rotation of the system, it could be a sign of a problem with the slewing ring. This may be due to insufficient or contaminated lubrication, damaged rolling elements, or misalignment. Diagnosis involves checking the lubrication levels and quality, inspecting the rolling elements for signs of damage, and verifying the alignment of the slewing ring.
  • Uneven or Excessive Wear: Visual inspection of the slewing ring can reveal signs of uneven or excessive wear. This can manifest as worn-out or pitted rolling elements, damaged or missing teeth, or abnormal wear patterns on the raceways. Regular inspections and comparing the current condition with the manufacturer’s specifications or previous inspection records can help diagnose the level of wear and determine if maintenance or replacement is necessary.
  • Leakage or Contamination: Leakage of lubricant or the presence of contaminants, such as dirt, water, or debris, in the slewing ring assembly can be indicative of a problem. It may lead to inadequate lubrication, accelerated wear, or corrosion. Visual inspection of the slewing ring and any associated seals or gaskets can help identify any signs of leakage or contamination. Addressing the source of the leakage and ensuring proper sealing is essential to maintain the integrity and performance of the slewing ring.
  • Reduced Load-Carrying Capacity: If the rotating system experiences difficulty in handling its intended loads or shows signs of decreased load-carrying capacity, it may indicate an issue with the slewing ring. Factors such as worn-out rolling elements, damaged raceways, or misalignment can contribute to the reduction in load-carrying capacity. Performance testing and comparing the system’s current capabilities with its original specifications can help diagnose any loss in load-carrying capacity.

In summary, signs that indicate a need for slewing ring replacement or maintenance include unusual noise, abnormal vibration, irregular movement, increased friction, uneven or excessive wear, leakage or contamination, and reduced load-carrying capacity. These signs can be diagnosed through visual inspections, vibration analysis, performance testing, and comparing the observed conditions with the manufacturer’s specifications. Early detection and timely maintenance or replacement of the slewing ring can prevent further damage, ensure safe operation, and extend the lifespan of the rotating system.

Can you explain the primary functions and roles of slewing rings in various applications?

Slewing rings play crucial functions and serve different roles in various applications across industries. These specialized bearings enable controlled rotational movement and support heavy loads. Here’s a detailed explanation of the primary functions and roles of slewing rings in different applications:

  • Construction and Cranes: In construction machinery and cranes, slewing rings are used to support the boom or jib, enabling 360-degree rotation. They provide a stable and low-friction interface that allows for efficient material handling and precise positioning of heavy loads. Slewing rings in these applications must withstand high axial, radial, and moment loads.
  • Wind Turbines: Slewing rings play a critical role in wind turbine systems. They support the rotor and allow it to rotate according to wind direction, facilitating efficient power generation. Slewing rings in wind turbines must handle significant loads while ensuring smooth rotation and precise alignment between the rotor and the nacelle.
  • Industrial Equipment: Slewing rings find applications in various industrial equipment, including indexing tables, turntables, robotic arms, and packaging machinery. In these applications, slewing rings enable controlled and precise rotation, allowing for accurate positioning, indexing, and automation. They contribute to the overall efficiency and functionality of industrial machinery.
  • Transportation and Automotive: Slewing rings are utilized in transportation and automotive applications, such as vehicle cranes, aerial platforms, and rotating platforms for heavy-duty vehicles. They provide a stable and reliable connection that enables safe and controlled rotation. In these applications, slewing rings must withstand dynamic loads and harsh operating conditions while ensuring the safety and stability of the equipment.
  • Medical and Rehabilitation Equipment: Slewing rings are important components in medical and rehabilitation equipment, including patient lifts and adjustable beds. They enable smooth and controlled movement, allowing for easy and safe patient transfers and positioning. Slewing rings in these applications must provide precise and quiet operation, ensuring patient comfort and care.
  • Aerospace and Defense: Slewing rings are utilized in aerospace and defense applications, such as radar systems, missile launchers, and satellite antennas. They enable precise and controlled movement in critical systems, contributing to accurate tracking, targeting, and communication. Slewing rings in aerospace and defense applications must meet stringent requirements for reliability, precision, and durability.
  • Marine and Offshore: Slewing rings are employed in marine and offshore equipment, including cranes, davits, and rotating platforms on ships and offshore rigs. They enable heavy lifting and controlled rotation in challenging marine environments. Slewing rings in marine applications must be corrosion-resistant and capable of withstanding harsh weather conditions and high loads.

Overall, slewing rings serve as essential components in a wide range of applications, enabling controlled rotation, supporting heavy loads, and ensuring precise positioning. Their versatility and ability to withstand varying loads and operating conditions make them invaluable in industries such as construction, wind energy, industrial automation, transportation, healthcare, aerospace, and marine sectors.

China Custom Professional Slewing Bearing External Gear Slewing Rings for Ex210lch-5 Excavator  China Custom Professional Slewing Bearing External Gear Slewing Rings for Ex210lch-5 Excavator
editor by Dream 2024-04-30

China Standard Internal Gear Factory 024.30.900 020.30.1000 021.30.1000 Swing Bearing Slewing Ring for Excavator Double Row Ball Bearing

Product Description

 

Product Description

The double row ball slewing bearing has 3 seat rings , the steel ball and the spaces can be directly arranged into the upper and lower races. Two rows of steel balls are fitted according to the force born . Open mode fitting is extraordinary convenient .The load angles of both upper and lower race are 90°,which enable to bear large axial force and the tilting moment.

As the axial and radial dimension of the double row ball slewing bearing are rather large , structural is tightening and can support high static loads. They are mainly used in situations with variational load position and direction and continuously rotating . Especially suitable for tower cranes which require working radius over medium range , mobile crane and loading and unloading machinery .

Product Parameters

Different dia product specification

Model Boundary dimensions(mm) Bolt hole diameter(mm) Structure dimensions(mm) Gear parameters(mm) Basic load ratings Mass
Non-gear External gear Internal gear H D1  D2  n <p  D3 (D d1 (dT) H1 h n3 φ3  m Da Z  da Z b X Coa 104N kg
571-25-500 571-25-500 571-25-500 616 384 106 580 420 20 18 523 518 96 26 4 M10x1 5 645 126 355 72 60 0.5 121 100
  571-25-500 571-25-500 616 384 106 580 420 20 18 523 518 96 26 4 M10x1 6 648 105 348 59 60 0.5 121 100
571-25-560 571-25-560 571-25-560 676 444 106 640 480 20 18 583 577 96 26 4 M10x1 5 705 138 415 84 60 0.5 134 115
  571-25-560 571-25-560 676 444 106 640 480 20 18 583 577 96 26 4 M10x1 6 708 115 408 69 60 0.5 134 115
571-25-630 571-25-630 571-25-630 746 514 106 710 550 24 18 653 647 96 26 4 M10x1 6 792 129 480 81 60 0.5 153 130
  571-25-630 571-25-630 746 514 106 710 550 24 18 653 647 96 26 4 M10x1 8 792 96 472 60 60 0.5 153 130
571-25-710 571-25-710 571-25-710 826 594 106 790 630 24 18 733 728 96 26 4 M10x1 6 864 141 558 94 60 0.5 173 140
  571-25-710 571-25-710 826 594 106 790 630 24 18 733 728 96 26 4 M10x1 8 864 105 552 70 60 0.5 173 140
571-30-800 571-30-800 571-30-800 942 658 124 898 702 30 22 829 823 114 29 6 M10x1 8 984 120 616 78 80 0.5 230 200
  571-30-800 571-30-800 942 658 124 898 702 30 22 829 823 114 29 6 M10x1 10 990 96 610 62 80 0.5 230 200
571-30-900 571-30-900 571-30-900 1042 758 124 998 802 30 22 929 923 114 29 6 M10x1 8 1088 133 712 90 80 0.5 258 250
  571-30-900 571-30-900 1042 758 124 998 802 30 22 929 923 114 29 6 M10x1 10 1090 106 710 72 80 0.5 258 250
571-30-1000 571-30-1000 571-30-1000 1142 858 124 1098 902 36 22 1571 1571 114 29 6 M10x1 10 1200 117 810 82 80 0.5 286 300
  571-30-1000 571-30-1000 1142 858 124 1098 902 36 22 1571 1571 114 29 6 M10x1 12 1200 97 792 67 80 0.5 286 300
571-30-1120 571-30-1120 571-30-1120 1262 978 124 1218 1571 36 22 1148 1143 114 29 6 M10x1 10 1320 129 920 93 80 0.5 321 340
  571-30-1120 571-30-1120 1262 978 124 1218 1571 36 22 1148 1143 114 29 6 M10x1 12 1320 107 912 77 80 0.5 321 340
571-40-1250 571-40-1250 571-40-1250 1426 1074 160 1374 1126 40 26 1286 1282 150 39 6 M10x1 12 1500 122 1008 85 90 0.5 482 580
  571-40-1250 571-40-1250 1426 1074 160 1374 1126 40 26 1286 1282 150 39 6 M10x1 14 1498 104 1008 73 90 0.5 482 580
571-40-1400 571-40-1400 571-40-1400 1576 1224 160 1524 1272 40 26 1436 1432 150 39 6 M10x1 12 1644 134 1152 97 90 0.5 543 650
  571-40-1400 571-40-1400 1576 1224 160 1524 1272 40 26 1436 1432 150 39 6 M10x1 14 1652 115 1148 83 90 0.5 543 650
571-40-1600 571-40-1600 571-40-1600 1776 1424 160 1724 1476 45 26 1636 1632 150 39 8 M10x1 14 1848 129 1344 97 90 0.5 620 750
  571-40-1600 571-40-1600 1776 1424 160 1724 1476 45 26 1636 1632 150 39 8 M10x1 16 1856 113 1344 85 90 0.5 620 750
571-40-1800 571-40-1800 571-40-1800 1976 1624 160 1924 1676 45 26 1836 1832 150 39 8 M10x1 14 2058 144 1540 111 90 0.5 692 820
  571-40-1800 571-40-1800 1976 1624 160 1924 1676 45 26 1836 1832 150 39 8 M10x1 16 2064 126 1536 97 90 0.5 692 820
571-50-2000 571-50-2000 571-50-2000 2215 1785 190 2149 1851 48 33 2038 2032 178 47 8 M10x1 16 2304 141 1696 107 120 0.5 987 1150
  571-50-2000 571-50-2000 2215 1785 190 2149 1851 48 33 2038 2032 178 47 8 M10x1 18 2304 125 1692 95 120 0.5 987 1150
571-50-2240 571-50-2240 571-50-2240 2455 2571 190 2389 2091 48 33 2278 2272 178 47 8 M10x1 16 2544 156 1936 122 120 0.5 1110 1500
  571-50-2240 571-50-2240 2455 2571 190 2389 2091 48 33 2278 2272 178 47 8 M10x1 18 2556 139 1926 108 120 0.5 1110 1500
571-50-2500 571-50-2500 571-50-2500 2715 2285 190 2649 2351 56 33 2538 2532 178 47 8 M10x1 18 2804 153 2196 123 120 0.5 1110 1500
  571-50-2500 571-50-2500 2715 2285 190 2649 2351 56 33 2538 2532 178 47 8 M10x1 20 2820 138 2180 110 120 0.5 1110 1500
571-50-2800 571-50-2800 571-50-2800 3015 2585 190 2949 2651 56 33 2838 2832 178 47 8 M10x1 18 3114 170 2484 139 120 0.5 1390 1900
  571-50-2800 571-50-2800 3015 2585 190 2949 2651 56 33 2838 2832 178 47 8 M10x1 20 3120 153 2480 125 120 0.5 1390 1900
571-60-3150 571-60-3150 571-60-3150 3428 2872 226 3338 2962 56 45 3198 3192 214 56 8 M10x1 20 3540 174 2760 139 150 0.5 1870 3300
  571-60-3150 571-60-3150 3428 2872 226 3338 2962 56 45 3198 3192 214 56 8 M10x1 22 3542 158 2750 126 150 0.5 1870 3300
571-60-3550 571-60-3550 571-60-3550 3828 3272 226 3738 3362 56 45 3598 3592 214 56 8 M10x1 20 3940 194 3160 159 150 0.5 2110 3700
  571-60-3550 571-60-3550 3828 3272 226 3738 3362 56 45 3598 3592 214 56 8 M10x1 22 3938 176 3168 145 150 0.5 2110 3700
571-60-4000 571-60-4000 571-60-4000 4278 3722 226 4188 3812 60 45 4048 4042 214 56 10 M10x1 22 4400 197 3608 165 150 0.5 2370 4200
  571-60-4000 571-60-4000 4278 3722 226 4188 3812 60 45 4048 4042 214 56 10 M10x1 25 4400 173 3600 145 150 0.5 2370 4200
571-60-4500 571-60-4500 571-60-4500 4778 4222 226 4688 4312 60 45 4548 4542 214 56 10 M10x1 22 4884 219 4114 188 150 0.5 2670 4700
  571-60-4500 571-60-4500 4778 4222 226 4688 4312 60 45 4548 4542 214 56 10 M10x1 25 4900 193 4100 165 150 0.5 2670 4700

Same dia product specification
Internal and external gera

Designations Gear parameters External gear parameters Internal gear parameters Weight (kg)
External gear Internal gear b m da Z da Z
031.25.560 033.25.560 60 5 704 138 417 84 156
032.25.560 034.25.560 60 6 706.8 115 410.4 69  
031.25.630 033.25.630 60 6 790.8 129 482.4 81 175
032.25.630 034.25.630 60 8 790.4 96 475.2 60  
031.25.710 033.25.710 60 6 862.8 141 560.4 94 198
032.25.710 034.25.710 60 8 862.4 105 555.2 70  
031.30.800 033.30.800 80 8 982.4 120 619.2 78 324
032.30.900 034.30.900 80 10 1088 106 714 72  
031.30.1000 033.30.1000 80 10 1198 117 814 82 405
032.30.1000 034.30.1000 80 12 1197.6 97 796.8 67  
031.30.1120 033.30.1120 80 10 1318 129 924 93 455
032.30.1120 034.30.1120 80 12 1317.6 107 916.8 77  
031.40.1250 033.40.1250 90 12 1497.6 122 1012.8 85 837
032.40.1250 034.40.1250 90 14 1495.2 104 1013.6 73  
031.40.1400 033.40.1400 90 12 1641.6 134 1156.8 97 940
032.40.1400 034.40.1400 90 14 1649.2 115 1153.6 83  
031.40.1600 033.40.1600 90 14 1845.2 129 1349.6 97 1075
032.40.1600 034.40.1600 90 16 1852.8 113 1350.4 85  
031.40.1800 033.40.1800 90 14 2055.2 144 1545.6 111 1213
032.40.1800 034.40.1800 90 16 2060.8 126 1542.4 97  
031.50.200 033.50.2000 120 16 2300.8 141 1702.4 107 1921
032.50.2000 034.50.2000 120 18 2300.4 125 1699.32 95  
031.50.2240 033.50.2240 120 16 2540.8 156 1942.4 122 2159
032.50.2240 034.50.2240 120 18 2552.4 139 1933.2 108  
031.50.2500 033.50.2500 120 18 2804.4 153 2203.2 123 2406
032.50.2500 034.50.2500 120 20 2816 138 2188 110  
031.50.2800 033.50.2800 120 18 3110.4 170 2491.2 139 3221
032.50.2800 034.50.2800 120 20 3116 153 2488 125  
031.60.3150 033.60.3150 150 20 3536 174 2768 139 4652
032.60.3150 034.60.3150 150 22 3537.6 158 2758.8 126  
031.60.3550 033.60.3550 150 20 3936 194 3168 159 5262
032.60.3550 034.60.3550 150 22 3933.6 176 3176.8 145  
031.60.4000 033.60.4000 150 22 4395.6 197 3616.8 165 5938
032.60.4000 034.60.4000 150 25 4395 173 3610 145  

No gear

Designations Dimension (mm)
Non-geartype D d T H h D1 d1 dn n n1
030.25.560 676 444 110 100 26 640 480 18 20 4
676 444 110 100 26 640 480 18 20 4
030.25.630 746 514 110 100 26 710 550 18 24 4
746 514 110 100 26 710 550 18 24 4
030.25.710 826 594 110 100 26 790 630 18 24 4
826 594 110 100 26 790 630 18 24 4
030.30.800 942 658 130 120 29 898 702 22 30 6
942 658 130 120 29 898 702 22 30 6
030.30.900 1042 758 130 120 29 998 802 22 30 6
1042 758 130 120 29 998 802 22 30 6
030.30.1000 1142 858 130 120 29 1098 902 22 36 6
1142 858 130 120 29 1098 902 22 36 6
030.30.1120 1262 978 130 120 29 1218 1571 22 36 6
1262 978 130 120 29 1218 1571 22 36 6
030.40.1250 1426 1074 170 160 39 1374 1126 26 40 5
1426 1074 170 160 39 1374 1126 26 40 5
030.40.1400 1576 1224 170 160 39 1524 1272 26 40 5
1576 1224 170 160 39 1524 1272 26 40 5
030.40.1600 1776 1424 170 160 39 1724 1476 26 45 5
1776 1424 170 160 39 1724 1476 26 45 5
030.40.1800 1976 1624 170 160 39 1924 1676 26 45 5
1976 1624 170 160 39 1924 1676 26 45 5
030.50.2000 2215 1785 200 188 47 2149 1851 33 48 8
2215 1785 200 188 47 2149 1851 33 48 8
030.50.2240 2455 2571 200 188 47 2389 2091 33 48 8
2455 2571 200 188 47 2389 2091 33 48 8
030.50.2500 2715 2285 200 188 47 2649 2351 33 56 8
2715 2285 200 188 47 2649 2351 33 56 8
030.50.2800 3015 2585 200 224 47 2949 2651 33 56 8
3015 2585 200 224 47 2949 2651 33 56 8
030.60.3150 3428 2872 240 224 56 3338 2962 45 56 8
3428 2872 240 224 56 3338 2962 45 56 8
030.60.3550 3828 3272 240 224 56 3738 3362 45 56 8
3828 3272 240 224 56 3738 3362 45 56 8
030.60.4000 4278 3722 240 224 56 4188 3812 45 60 8
4278 3722 240 224 56 4188 3812 45 60 8

Company Profile

HangZhou solarich machinery Co., Ltd. is a professional manufacturer of bearings, We can design and manufacture single-row ball slewing bearings, double-row ball slewing bearings, three-row roller slewing bearings, ball combination slewing bearings, crossed roller bearings, crossed tapered roller bearings Bearings, slewing drives and custom bearings.

Subordinate factories use high-quality chrome steel and stainless steel as raw materials, specializing in the design, development and manufacture of deep groove ball bearings, stainless steel bearings, stainless steel outer ball bearings , tapered bearings , cylindrical bearings, needle bearing , thrust bearing , bearing housing and non-standard bearings.

Adhering to the business philosophy of “Quality and Integrity”, we will continue to provide excellent bearings and high-quality services to serve global customer

Solutions

Playground Equipment

Slewing bearing can provide excellent performance experience and safety guarantee for amusement equipment, and the durability of slewing bearing is also the main concern of technical engineers. For more than 20 years, slewing bearing solutions have been used in many key applications of large amusement equipment. reflect.

We designed the cross-sectional area to remain the same as the raceway center distance increased, and the slewing ring achieves better dynamic capabilities with less mass.

Key advantages include:
* Lighter weight
* Save spaighter weightce
* Long life and lower maintenance costs
* Better stiffness
* Better lubrication in extreme conditions

Medical Device
With the comprehensive development of scientific and technological strength, the social economyu has been improved faster, and the medical equipment has also been comprehensively improved.

 

Mining & construction machinery

Mining machinery and heavy construction machinery industry uses a range of different types of highly specialized mobile machinery. . The places where mining machinery and construction machinery are active are mostly mining sites such as mountains and deserts that are far away from ordinary human life. These heavy machinery work in the harshest environments and require continuous low-friction work without reducing load capacity and minimum. assembly and adjustment time. Solving the bearing heating problem caused by the large exciting force, high vibration frequency and continuous operation of vibratory rollers for users has become the focus of the work. Mineral crushing machinery, cutting machinery, screening machinery, loading machinery, conveying machinery and other equipment in the use environment of bearings, users desire products with robustness, durability and high reliability to resist these harsh working conditions.

Transportation vehicle

Metric and inch needle roller bearings have various structural types, mainly including open drawn cup needle roller bearings, closed drawn cup needle roller bearings, needle roller bearings with inner ring and needle roller bearings without inner ring/without inner ring Cage needle roller bearings, caged and cageless needle roller bearings. Widely used in automobiles, motorcycles, mopeds, power tools, textiles, agricultural machinery, printing machinery, construction machinery, automatic instruments and other fields.

Automatic machinery

Industrial robot bearings mainly include 2 categories: 1 is thin-walled bearings, and the other is crossed cylindrical roller bearings. In addition, there are harmonic reducer bearings, linear roller bearings, spherical plain bearings, etc. Bearings with good performance have large bearing capacity, good rigidity, high rotation precision and easy installation.

 

Packaging & Shipping

FAQ

Q: Are you trading company or manufacturer?
A: We are bearing manufacturer.

Q: How do you control quality of bearing?
A: All products and services passed ISO9001-2008 Quality Certificate.

Q: What is the MOQ?
A: It depends on the bearing type. You can send inquiry or send e-mail  for more information.

Q: How about the package?
A: Industrial packing in general condition (Plastic tube+ carton+ pallet). Accept design package when OEM.

Q: How long is the delivery time?
A: It will take about 10 to 40 days, depends on the model and quantity.

Q: How about the shipping?
A: We can arrange the shipment or you may have the forwarder.

Q: Is sample avaiable?
A: Yes, sample order is acceptable.

Q: Can we use our own LOGO or design on bearings?
A: Yes. OEM is acceptable. We can design the bearing with your requirements and use your own LOGO and package design.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Nonstandard
Sealing Gland: Non-Seal
Rolling-Element Number: Double-Row
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

What are the different types and configurations of slewing rings available in the market?

Slewing rings are available in various types and configurations to cater to the diverse needs of different applications. The following are the different types and configurations of slewing rings commonly available in the market:

  • Single-Row Ball Slewing Rings: This type of slewing ring consists of a single row of balls placed between two rings. It offers compact design, low weight, and high load-carrying capacity. Single-row ball slewing rings are commonly used in applications where axial and radial loads need to be supported.
  • Double-Row Ball Slewing Rings: Double-row ball slewing rings have two rows of balls, providing higher load-carrying capacity compared to single-row designs. They are suitable for applications that require increased load capacity and improved stiffness.
  • Three-Row Roller Slewing Rings: Three-row roller slewing rings feature three rows of rollers arranged in a crisscross pattern. This configuration allows for higher load-carrying capacity and increased rigidity. Three-row roller slewing rings are commonly used in heavy-duty applications where significant radial, axial, and moment loads need to be supported.
  • Ball and Roller Combination Slewing Rings: In some cases, slewing rings are designed with a combination of ball and roller elements. This configuration provides a balance between load capacity and reduced friction. It offers improved rotational characteristics and is often used in applications requiring high load capacity and smooth rotation.
  • Internal Gear and External Gear Slewing Rings: Slewing rings can be equipped with internal or external gears. Internal gear slewing rings have the gear teeth on the inner ring, while external gear slewing rings have the gear teeth on the outer ring. The gear mechanism allows for controlled rotation and can be driven by external components such as motors or hydraulic systems. The choice between internal or external gear configuration depends on the specific application requirements.
  • Non-Gear Slewing Rings: Some slewing rings are designed without integrated gears. These non-gear slewing rings are often used in applications where the rotation is driven by external components or when a separate gear mechanism is already in place.
  • Customized and Specialized Slewing Rings: In addition to the standard types and configurations, slewing rings can be customized and designed to meet specific application requirements. Customized slewing rings may involve variations in dimensions, load capacity, gear specifications, sealing systems, or materials to suit unique applications or challenging operating conditions.

The availability of different types and configurations of slewing rings allows for the selection of the most suitable design based on factors such as load requirements, space limitations, rotational speed, environmental conditions, and application-specific needs. It is essential to consider these factors when choosing a slewing ring to ensure optimal performance and reliability in the intended application.

What advantages do slewing rings offer compared to other rotational components?

Slewing rings offer several advantages compared to other rotational components. Their unique design and features make them a preferred choice in various applications. Here’s a detailed explanation of the advantages that slewing rings offer:

  • Compact Design: Slewing rings have a compact design that allows for efficient use of space. Compared to other rotational components such as gears and bearings, slewing rings provide a compact solution for supporting axial, radial, and moment loads while enabling rotational motion. Their compactness is especially advantageous in applications with limited space or weight constraints.
  • High Load-Carrying Capacity: Slewing rings are designed to handle significant loads. They are capable of supporting both axial and radial loads, as well as moment loads that result from uneven weight distribution or external forces. The robust construction and precise engineering of slewing rings enable them to withstand heavy loads, making them suitable for applications that require high load-carrying capacity.
  • Smooth Rotation: Slewing rings offer smooth rotation, allowing for precise and controlled motion. The rolling elements, whether balls or rollers, are positioned and guided within the raceways of the slewing ring to minimize friction and ensure smooth movement. This smooth rotation contributes to precise positioning and controlled motion, which is essential in applications that require accurate positioning and smooth operation.
  • Integrated Gear Mechanism: Many slewing rings come with an integrated gear mechanism. This eliminates the need for additional gearing components, simplifies the design, and reduces assembly time and costs. The integrated gear mechanism allows for torque transmission and rotational control, enabling precise and controlled motion without the need for external gearing systems.
  • Backlash Control: Slewing rings can be designed with minimal backlash, ensuring precise motion control. Backlash refers to the play or clearance between mating gears or components, which can lead to lost motion or inaccuracies in positioning. By minimizing backlash, slewing rings offer improved accuracy and repeatability in motion control applications.
  • Versatility and Customization: Slewing rings are highly versatile and can be customized to meet specific application requirements. They can be tailored in terms of dimensions, load capacity, mounting interfaces, gear specifications, sealing systems, and materials. This versatility allows slewing rings to be optimized for various industries and applications, ensuring the best performance and compatibility.
  • Durable and Low Maintenance: Slewing rings are designed to be durable and require minimal maintenance. They are constructed with high-quality materials, precision manufacturing, and appropriate sealing systems to withstand harsh operating conditions and contaminants. This durability and low maintenance requirement contribute to the long service life and reliability of slewing rings.

Overall, slewing rings offer advantages such as compact design, high load-carrying capacity, smooth rotation, integrated gear mechanism, backlash control, versatility, customization options, and durability. These advantages make slewing rings a preferred choice in various applications, including construction machinery, material handling equipment, cranes, wind turbines, robotics, and manufacturing systems.

How does the choice of slewing rings affect the overall performance and reliability of rotating systems?

The choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. The selection of the appropriate slewing ring involves considering various factors such as load capacity, operating conditions, precision requirements, and application-specific needs. Here’s a detailed explanation of how the choice of slewing rings affects the overall performance and reliability of rotating systems:

  • Load Capacity: The load capacity of the slewing ring is a critical factor in determining the performance and reliability of the rotating system. Choosing a slewing ring with an adequate load capacity ensures that the system can handle the expected loads without excessive stress or deformation. If the selected slewing ring has insufficient load capacity for the application, it can lead to premature failure, increased wear, and compromised reliability.
  • Operating Conditions: The operating conditions, including factors such as temperature, humidity, dust, and exposure to corrosive substances, influence the choice of slewing rings. It is essential to select a slewing ring that is designed to withstand the specific environmental conditions of the application. Failure to consider the operating conditions can result in accelerated wear, corrosion, reduced performance, and decreased reliability of the rotating system.
  • Precision Requirements: Some applications require high precision and accuracy in the movement and positioning of the rotating system. The choice of slewing ring with appropriate precision is crucial to meet these requirements. Slewing rings designed for precision applications incorporate features such as high-precision raceways, gear teeth, or preloading mechanisms. Selecting a slewing ring with inadequate precision can lead to inaccuracies, positioning errors, and compromised performance of the rotating system.
  • Material Selection: The choice of materials for the slewing ring affects its durability, resistance to wear, and overall reliability. Different materials, such as carbon steel, stainless steel, or specialized alloys, have varying properties and performance characteristics. The selection of the appropriate material depends on factors such as load requirements, operating conditions, and the presence of corrosive or abrasive elements. Choosing the wrong material can result in premature wear, reduced lifespan, and compromised reliability of the rotating system.
  • Sealing and Lubrication: Slewing rings require proper sealing and lubrication to ensure smooth operation and prevent contamination or inadequate lubrication. The choice of slewing rings with effective sealing mechanisms and suitable lubrication requirements is crucial for maintaining performance and reliability. Inadequate sealing or improper lubrication can lead to increased friction, accelerated wear, and decreased reliability of the rotating system.
  • Manufacturer and Quality: The choice of a reputable manufacturer and high-quality slewing rings is essential for ensuring reliability and performance. Reliable manufacturers adhere to stringent quality control processes, use advanced manufacturing techniques, and provide comprehensive technical support. Choosing slewing rings from trusted manufacturers reduces the risk of premature failures, ensures consistent performance, and enhances the overall reliability of the rotating system.

In summary, the choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. Considering factors such as load capacity, operating conditions, precision requirements, material selection, sealing and lubrication, and the reputation of the manufacturer helps in selecting the appropriate slewing rings. By making the right choice, the rotating system can operate efficiently, withstand expected loads, maintain precision, and provide reliable performance throughout its lifespan.

China Standard Internal Gear Factory 024.30.900 020.30.1000 021.30.1000 Swing Bearing Slewing Ring for Excavator Double Row Ball Bearing  China Standard Internal Gear Factory 024.30.900 020.30.1000 021.30.1000 Swing Bearing Slewing Ring for Excavator Double Row Ball Bearing
editor by Dream 2024-04-29

China high quality China Supplier Worm Drive Excavator Swing Circle Slewing Bearing Inner Outer Gear Stainless Steel Trailer Plastic Bearing Ring Manufacturer Industrial bearing block

Product Description

China Supplier Worm Drive Excavator Swing Circle Slewing bearing inner outer gear stainless steel Trailer plastic Bearing Manufacturer Industrial

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Certification: CE, RoHS, GS, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Customized: Customized
Material: Metal
Application: Metal Recycling Machine, Metal Cutting Machine, Metal Straightening Machinery, Metal Spinning Machinery, Metal Processing Machinery Parts, Metal forging Machinery, Metal Engraving Machinery, Metal Drawing Machinery, Metal Coating Machinery, Metal Casting Machinery
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bushing

What you should know about bushings

If you are in the market for a casing, there are a few things you should know before buying. First, a bushing is a mechanical part with a rotating or sliding shaft part. You can find them in almost all industrial applications due to their excellent load-carrying capacity and anti-friction properties. They are especially important in construction, mining, agriculture, hydropower, material handling, and more.

Casing application

The casing market is mainly driven by the growth of the power generation industry. The increasing electrification of Asia Pacific and the deployment of renewable energy in countries such as Saudi Arabia and the UAE are driving the demand for distribution transformer bushings. In addition, the demand for bushings in Western Europe is also likely to increase with the spread of renewable energy and the installation of electric vehicle charging infrastructure. However, the market in Asia Pacific is expected to remain small compared to the rest of the world.
Although bushings are relatively expensive, they are very durable and cost-effective. Furthermore, bushings have a variety of applications, making them an important component in power transformers. For example, power transformers often use bushings to achieve relative movement by sliding or rolling. The vehicle suspension system also uses rubber bushings for a smooth ride and rotating bushings for machine-related operations. They require precision machined parts and are especially useful in applications where high loads and friction must be controlled. Also, plastic bushings are used for wheels in dry kilns, where lubrication is often troublesome.
Transformers require constant monitoring, which is one of the reasons bushings are so important in power transformers. Any failure of these components could result in the total loss of the transformer and all surrounding equipment. To maintain high system reliability, utilities must monitor insulation in and around bushings, especially if transformers have been in use for decades. Some utilities have made monitoring the condition of their transformers an important part of their smart grid plans.

Material

The core of the dry casing has many material interfaces. The discharge most likely originates near the edges of the foils and can cause electrical tree growth or breakdown between adjacent foils. Several studies have investigated interfacial effects in composite insulating materials and concluded that the conditions under which the interface occurs is a key factor in determining the growth of electrical trees. This study found that material type and interface conditions are the two most important factors for the growth of electrical trees.
Bushings can be made of many different materials, depending on their purpose. The main purpose of the bushing is to support the assembly while protecting it. They must be stiff enough to support the load placed on them, and flexible enough to protect the shaft. Since the shaft is usually not centered on the bushing during rotation, the bushing must be durable enough to carry the load while still protecting the shaft. Here are several materials used for bushings:
A stabilizer bar assembly is a good example of pre-assembly. This pre-assembly enables the vehicle assembly plant to receive components ready for vehicle assembly. The prior art requires the vehicle assembly plant to separate the bushing from the stabilizer bar. However, the present invention eliminates this step and provides a mechanically rigid stabilizer bar assembly. It is designed to prevent audible squeals and improve vehicle performance and handling.
Hardened steel bushings are ideal for pivot and low speed applications. They are made of high carbon steel and fully hardened to 56-62 HRC. Bronze bushings require daily or weekly lubrication but are more expensive than plastic bushings. Plastic bushings are low cost, low maintenance, self lubricating and do not require regular lubrication. These are also suitable for applications with hard to reach parts.
bushing

application

Bushings have many applications in various industries. Most of the time, it is used for drilling. Its excellent chemical and mechanical properties can be used to protect various equipment. These components are versatile and available in a variety of materials. All sleeves are packaged according to national and international standards. They are used in many industrial processes from construction to drilling. Some application examples are listed below.The component 10 may contain a tank for a liquid such as fuel, and the object 12 may be made of fiber reinforced composite material. Sleeve assembly 16 is configured to ground component 10 and object 12 . It may be a bulkhead isolator 40 used to isolate electrical charges in aircraft hydraulic lines. Bushing assembly 16 is one of many possible uses for the bushing assembly. The following examples illustrate various applications of bushing assemblies.
Bearings are devices used to reduce friction between moving surfaces. They are a good choice for many applications as they are maintenance free and extend the life of machine components. They can be used in a variety of applications and are often used with plastic and metal materials. For example, Daikin offers bronze and brass bushings. Bushings have many other uses, but they are most commonly used in machines, especially when used in low-load environments.
The most common application for bushings is drilling. Swivel bushings can be used in almost any drilling application. For more complex applications, CZPT’s engineering department can create special designs to your specifications. The applications of bushings in machining centers are endless. By providing a smooth, reliable interface, bushings are an excellent choice for precision machining. They can also provide current paths.

Cost

When you have a vehicle that needs a bushing replacement, you may be wondering about the cost of a bushing replacement. The fact is, the cost of a bushing replacement will vary widely, depending on the specific car model. Some cars cost as little as $5, while other vehicles can cost up to $300. The replacement of a control arm bushing may not cost that much, but it’s important to know that it’s a relatively expensive part to replace.
Most mechanics charge around $375 for a job that involves replacing the bushing in a control arm. However, this price range can vary significantly, depending on whether the mechanic uses OE or aftermarket parts. In any case, the cost of labor is typically included in the price. Some mechanics may even include a labor charge, which is an additional cost. In general, however, the cost of a control arm bushing replacement is comparable to the cost of replacing a single bushing.
Control arm bushings are made of two metal cylinders secured together by a thick layer of rubber. Over time, these parts can deteriorate due to accidents, potholes, and off-roading. For this reason, it is important to replace them as soon as possible. Bushing replacement can save you money in the long run, and it’s important to have your vehicle repaired as soon as possible. If your control arm bushing is showing signs of wear, you should have it replaced before it becomes completely useless.
If you have decided to replace your suspension bushing yourself, the cost will be considerably lower than you would spend on the replacement of other components. If you have a mechanically-inclined mechanic, you can do it yourself. The parts and labour are reasonably cheap, but the most expensive part is the labor. Because it requires disassembling the wheel and suspension and installing a new bushing, it is important to have a mechanic who has a good understanding of vehicle mechanicry. The cost for control arm bushing replacement is between $20 and $80 per bushing, and a set of four costs approximately $300.
bushing

Disambiguation

If you’ve come across a page containing information about Bushing, you may have been looking for more information. This disambiguation page lists publications about the person, but these have not been assigned to him. We encourage you to contact us if you know who the true author of these publications is. Nevertheless, if you’re searching for specific information about Bushing, we recommend you start with CZPT.

China high quality China Supplier Worm Drive Excavator Swing Circle Slewing Bearing Inner Outer Gear Stainless Steel Trailer Plastic Bearing Ring Manufacturer Industrial   bearing blockChina high quality China Supplier Worm Drive Excavator Swing Circle Slewing Bearing Inner Outer Gear Stainless Steel Trailer Plastic Bearing Ring Manufacturer Industrial   bearing block
editor by Dream 2024-04-25

China supplier Ec360blc Excavator Slewing Rings Swing Gear Slew Bearing 14563350 drive shaft bearing

Product Description

EC360BLC Excavator slewing rings swing gear slew bearing 14563350
 

Excavators, also known as excavating machinery, also known as excavators, are earth-moving machinery that use buckets to excavate materials above or below the bearing surface and load them into transport vehicles or unload them to a stockyard.
The materials excavated by the excavator are mainly soil, coal, silt, and pre-loose soil and rocks. From the perspective of the development of construction machinery in recent years, the development of excavators is relatively fast, and excavators have become 1 of the most important construction machinery in engineering construction.

We can provide alternative Swing circle for your , HITACHI, KOBELCO, HYUNDAI, VOLVO, DOOSAN, DAEWOO, JCB,CASE, SUMITOMO, KATO, etc.,There are normal and non standard over 1000 hundreds types for you choose.
product-list-1.html 

USA Excavator Slewing Rings

CAT70B CAT120B CAT311 CAT305.5 CAT306 CAT307 CAT308 CAT312 CAT315 CAT320 CAT323 CAT324 CAT325 CAT326 CAT330 CAT336 CAT345 CAT349 CAT365 CAT374 CAT390 CAT40/45 CAT60(YC60-8) E70B CAT80 CAT120B E140 E160 E180 E200B E215 E219 E219D CAT225/B/D CAT229 CAT305.5 CAT306/E E307 E307B E307C/D/E CAT308B E311B E312B CAT311C CAT311D CAT312C/D CAT313C/D CAT315 E320B E320C/D E323C/D E322 E324D CAT330B CAT330C CAT336D CAT336D1 E340 CAT345B CAT345C CAT345D CAT349D CAT365

CX50B CX55 CX210 CX210B CX210 CX210B CX240A

Japan Excavator Slewing Bearings

PC30 PC45 PC50 PC55 PC56 PC60-5-6-7 PC60-8 PC70-8 PC78 PC100-3 PC120-6 PC130-7 PC150 PC160 PC200-7/8 PC220 PC228 PC270 PC240 PC300-6/7 PC360 PC400-6/7/8 PC450-6 PC600-6 PC650-3 PC650 PC800 PC1000 PC1200 PC1250 PC300-7 PC300-8 PC350-6 PC350-7 PC350-8 PC360-7 PC400-5 PC400-5A PC400-6 PC400-7 PC400-8 PC450-6 PC450-7 PC450-8 PC650-6E PC650-8 PC200-8 PC210-10 PC210LC-10 PC210-7 PC220-7 PC220-8 PC230-7 PC240-8 PC200-8 PC210-8 PC220-8 PC270 PC300 PC300LC PC300-5 PC300-6 PC130-7(4D102) PC150-5 PC180-5 PC160-7
PC200-5 PC210-5K PC220-5 PC200-6(S6D95)PC210-6(S6D95)PC220-6(S6D95)PC230-6(S6D95)PC200-6(S6D102)PC210-6(S6D102)PC220-6(S6D102) PC230-6(S6D102)PC200-7(S6D102)PC200-7 PC18 PC50-7 PC56 PC60-1 PC60-5 PC60-6 PC60-7 PC60-6 PC70-6 PC70-8 PC60-7 PC70-7 PC100-5 PC120-5 PC100-6(S4D95) PC120-6(S4D95) PC130-6(S4D95) PC130-7(S4D95) PC100-6(4D102) PC110-7(4D102) PC120-6(4D102) PC130-6(4D102)

UH571 UH045 UH063 UH083 EX35 EX40 EX55 EX60 EX60-3 EX120 EX200 EX300 EX310 ZX60 ZX70 ZA80 ZX110 ZX120 ZX200 ZX210 ZX250 ZX290 ZX330 ZX470 ZX870EX1000 EX1200 ZX225UR ZX520 EX120-3 EX120-5 EX130H-5 ZAX110 ZAX120-6 ZAX120 UH07-7 ZAX200 ZXA210 ZAX200-3G ZAX250-3G ZAX200-3 ZAX200LC-3 ZAX210H-3 ZAX210LCH-3 ZAX210K-3 ZAX210LCK-3 ZAX210LCN-3 EX200-1/2 EX200LC-2 EX200-3 EX200LC-3 EX200H-3 EX200LCH-3 EX200-5 EX210H-5 EX210LCH-5 ZAX225 ZX230 EX220-2 EX220-3 EX220-5 EX270-5 EX230H-3 EX280H-5 ZAX240H ZAX240LCH
ZAX240K ZAX250 ZAX270 ZAX280LC EX290LCH-5 EX300-1 EX300-2 EX300H-2 EX300-3 EX300-3C EX300H-3 EX310H-3C
EX310LCH-3C ZAX330 EX350 ZXA360 ZAX450-6 EX60-1 EX60-2 EX60-5 EX60LC-5 EX80-5 ZX60 ZAX70 ZA80 EX100-1 EX100-3 EX100-5 EX110-5 EX120-2
U15 KX41 KX41-2 KX135 KX185 KX155 KX161 KX163 KX165 KX183 K030 KX35 KX15 KX150 KX185

SK35 SK50 SK60 SK75 SK100 SK120 SK200-1-2-3-4-5-6 SK230 SK250 SK260 SK280 SK300 SK330 SK330-6 SK350 SK400 SK450 SK480 RK200 SK55 SK60-3 SK60-5 SK60-8 SK60SR SK75/SK75-8 K904C SK905C SK907B K907C SK100 SK120-3 SK120-5 SK135 SK03 SK04 SK045N2 SK130 SK140-8 SK07-1-N2 SK07-N2 SK200-1 SK200-2 SK200-3 SK200-5 SK200-6 SK210-6 SK200-8 SK210-8 SK230-6E SK250-6 SK250-8 SK260-8 SK270D SK330-8 SK350-8 SK480-6 SK480-8

SH55 SH60 SH75 SH50 SH100 SH120 SH125 SH135 SH140 SH145 SH200 SH200-3-5 SH220-2-3 SH240 SH225 SH260 SH265 SH280 SH300 SH340 SH350 SH400 SH430 SH450 SH40T SH60-1 SH100A1 SH120 SH120A1 SH120A2 SH120A3 SH200A1 SH200A3 SH210A3 SH210A5 SH220-2 SH220-3 SH225 SH260 SH265 SH240-5 SH340 SH300A2 SH350

HD100 HD250 HD450 HD512 HD513 HD516 HD550 HD700 HD770 HD800 HD820 HD880 HD900 HD1571 HD1430 HD2045 HD250-5 HD250-7 HD307 HD400-7 HD512 HD513 HD516 HD700-5 HD700-7 HD820-1/2/3/7 HD770-5 HD800-8 HD800-7 HD900-7 HD770-1 HD770-2 HD770-SE HD1571-3

ViO35 ViO55 ViO75 NS60-5 BT160C BT175 IHI135 IHI150 IHI160

MS70-2 MS090-8 MS110-2 MS120-1/2 MS120-8 MS140-1 MS180-3 MS180-8

South Korea Slewing Ring Bearings

R55 R60 R80 R130LC-3-5 R150 R190 R200 R200-5 R210 R215-7/9 R220 R225LC-7/9 R245 R260 R265 R290 R290 R290LC-7 R300LC R305LC R330LC R340 R375 R360LC-7 R390 R450LC R470 R485 R500 R55-5 R60-5 R55-7 R60-7 R70-7 R80 R110LC-7 R130-5 R130-7 R140LC-7 R150LC-7 R150LC-9 R200W-7 R200 R200-3 R200-5 R210-3 R210-5 R210-5D R220-3 R220-5 R210-7 R210-9 R215-7 R225-7 R220-9 R225-9 R260-7 R265-7 R290-3 R300-5 R290-7 R305-7 R305-9 R320-7

DH35 DH55 DH60 DH55 DH60 DH80 DH80-7 DH80GOLD DH150 DH200 DH220-3-5 DH280-5 DX60-DX200-DX225 DX260 DH290 DH360 DH420 DH500 DH55-5 DH60/DX60 DH80/DH80GLD DH130-5 DH150-7 DX150 DH220-3 DH215-7 DH215-9E DH220-5 DH220-7 DH215-9 DH225-7/9 DX225-7 DH250-5 DX255-5 DH258-7 DH280 DH290 DH300-5 DH300 DH300-7 DX300-9 DH360-5/7 DH400-5 DH370-7 DH370-9 DH420 DH450-3 DH500 SE210-1 SE210-2

China Manufacturer Slew Ring

CLG904 CLG9055 CLG906 CLG907 CLG9075 CLG908 CLG915 CLG150 CLG920 CLG921 CLG922 CLG225 CLG924 CLG925 CLG933 CLG936 CLG939 CLG942 CLG948 CLG950 CLG952 CLG200 CLG205 CLG220 CLG225

XE55 XE60 XE65 XE75 XE80 XE85 XE135 XE150 XE155 XE200 XE205 XE215 XE225 XE245 XE270 XE305 XE335 XE370 XE380 XE400 XE470 XE490 XE700

YC13 YC18 YC18-3 YC35 YC45 YC55 YC65 YC65-2 YC85 YC85-3 YC135 YC225LC YC230

SY55 SY60 SY65 SY70 SY75 SY85 SY95 SY115 SY135 SY155 SY195 SY200 SY205 SY215 SY220 SY225 SY235 SY245 SY285 SY305 SY335 SY365 SY375 SY395 SY415 SY485

 UK/SWEDEN/GERMANY Swing Bearing

R914 R924 R944 R944CLC
8061 8065 JS130 JS140 JS200 IS210 JS220 JCB70 JCB360 JS205
EC55 EC60 EC140BP EW145BP EW160BB EC210 EC240 EC290 EC360LC EC380 EC460 EC480 EC700 EC210B EC360

 
Product Process
Application:

 

– Excavators – Drilling rigs – Mining Equipments – Cranes   -Offshore Equipments  – Vehicles  – Machine Tools  – Wind Turbines

About Us:
HangZhou MC Bearing Technology Co.,Ltd (LYMC),who is manufacture located in bearing zone, focus on Slewing bearing, cross roller bearing and pinion,Dia from 50mm-8000mm, Our team with technical and full experience in the bearing industry.
*Professional in researching, developing, producing & marketing high precision bearings for 16 years;
*Many series bearings are on stock; Factory directly provide, most competitive price;
*Advanced CNC equipment, guarantee product accuracy & stability;
*One stop purchasing, product include cross roller bearing, rotary table bearing, robotic bearing, slewing bearing, angular contact ball bearing, large and extra large custom made bearing, diameter from 50~9000mm;
*Excellent pre-sale & after sale service. We can go to customers’ project site if needed.
*Professional technical & exporting team ensure excellent product design, quotation, delivering, documentation & custom clearance.

Our Service:

FAQ:
1.Q: Are you trading company or manufacturer ?
A: We are professional slewing bearing manufacturer with 20 years’ experience.
2.Q: How long is your delivery time?
A: Generally it is 4-5 days if the goods are in stock. or it is 45 days if the goods are not in
stock, Also it is according to quantity.
3.Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample, it is extra.
4.Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance, balance before shipment.
5.Q: Can you provide special customization according to the working conditions?
A: Sure, we can design and produce the slewing bearings for different working conditions.
6.Q: How about your guarantee?
A: We provide lifelong after-sales technical service. 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Sealed On Both Sides
Rolling-Element Number: Single-Row
Roller Type: Straight Raceway
Material: 50mn/42CrMo
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bushing

What is a bushing?

What is a bushing? Basically, bushings are spherical or spherical bearings for machines with sliding or rotating shaft assemblies. Due to their excellent load-carrying capacity and anti-friction properties, these bushings are used in almost all industrial applications. This makes them useful in industries such as construction, mining, agriculture, transportation, hydropower, food processing and material handling.

Shell information

The demand for bushings is closely related to the global transformer market. Growing renewable energy sources and high replacement rates of aging grid infrastructure are driving the global demand for transformer bushings. Increased urbanization is another factor driving the demand for transformer bushings. Among global regions, Asia Pacific is the largest market for medium voltage transformer bushings. The following section provides a detailed analysis of the market.
Bulk-type bushings are used for lower voltage ratings and consist of a center conductor stud or tube and an insulator housing. They are available in dry or oil filled versions, and their oil content is shared with the transformer main tank. However, the trend is slowly turning towards RIP bushings. Regardless of how different types of bushings are used, it is important to understand the difference between them.
A recent CZPT survey indicated that bushings account for 17% of all transformer failures. Among them, 30% caused fire accidents and 10% caused explosions. This is not a small risk, especially for such important electrical components as transformers. Because casing is so important, utilities are increasingly looking to preventative maintenance. However, this requires continuous monitoring of the bushing and its insulation. There are many benefits to using online condition monitoring.
One of the main benefits of locating and replacing faulty bushings is improved operability and safety. If you notice that your car is unstable in the corners, your bushings are worn. Anti-roll bar bushings can also be a sign of bushing damage. Do not ignore these warning signs as they can have dangerous consequences. To avoid these potential problems, make sure to get your vehicle serviced as soon as you notice any of these symptoms.
Be sure to park your vehicle on a level surface before you start changing your car bushings. You may need to unlock the hood latch and apply the brakes before continuing. Then, open the valve cover. This will allow you to see the engine area and bushings. You should also check that the wheels are not moving and avoid placing sharp objects in the engine bay. If you have time, open the hood and if you can see the bushings, turn on the headlights.
bushing

type

There are various types of bushings, each serving a different purpose. Oil-filled types are the most common and are designed for vertical installations. On the other hand, the embedded ferrule can accommodate the connection to the wire leads in the lower end of the ferrule. This feature significantly reduces the length of the sump end of the casing, but also adds additional complexity and cost.
There are two basic types of bushings. The first is a solid pour and the second is a capacitive graded variety. Solid cast bushings are typically used for low voltage transformer windings, while gas insulated bushings are insulated with pressurized gas. Gas-insulated bushings are also used in SF6 circuit breakers. If you are in the market for a new bushing, be sure to consider its cantilever strength and design.
Electrical bushings are an important part of various electrical equipment. They help carry high-voltage current through the enclosure and act as an insulator between a live conductor and a metal body at ground potential. Bulk-type bushings consist of a central conductive rod (usually copper or aluminum) and an insulator (silicone rubber compound or composite resin) surrounding the rod.
Transformers require transformer bushings. The construction and materials used in the bushing play a key role in the durability and longevity of the transformer. Transformers with weak bushings can fail, causing extensive damage. Moisture or voids can cause insulation breakdown, resulting in extensive electrical damage. Appropriate materials and optimized construction can reduce electric field stress and extend the life of the bushing.
Capacitor grading bushings are more expensive and are used in almost all high voltage systems. They use a conductive layer within the insulating layer between the center conductor and the insulator. Different manufacturers use different materials to produce these bushings. Earlier, capacitor grading bushings were made of concentric ceramic cylinders with metallized surfaces. They are also made from laminated cardboard tubes with conductive layers.

Function

A bushing is a support member that performs its function by acting as a washer and reducing noise and vibration. Bushings are used in valve covers and are made of corrosion-resistant materials to perform these functions. These products can be found in all types of machinery from cars to airplanes. Below are some common uses for bushings. Read on to discover more. Here are some of the most important features of the shell.
Electrical bushings transmit electricity. They can be used in circuit breakers, transformers, power capacitors and shunt reactors. The conductors of the bushing can be built directly into the bushing or through the bushing. Both current and voltage represent electricity. The bushing must have insulation capable of withstanding the voltage and its current-carrying conductors must be capable of carrying the rated current without overheating the adjacent insulation.
The bushing wraps around the stem, which is a relatively simple replacement part. It is a hardened part that prevents leaks and improves sealing. Plus, its low-cost replacement makes it a very easy-to-machine part. Bushings are also used in valves for guiding purposes. These two features make bushings an important part of many machines and applications. So, learn more about them.
Copper and brass are commonly used bushing materials. They have high compressive strength and high surface pressure. This material is suitable for bearings in low speed situations and heavy duty applications. Copper and brass are the most common types of casings, and they are both made in China. They are all relatively inexpensive and are available in a variety of materials and sizes. If you are considering purchasing a casing, keep in mind that it must meet national standards.
bushing

cost

Whether you’re looking for a replacement bushing for your rear suspension or just need to replace the fork, you have a few different options. The two main types of bushings are coated and uncoated. If you want to save money on bushing replacements, you should consider getting a cheaper lower fork. Whether you’re replacing bushings to improve ride quality or prevent damage to your wheel loader, you’ll find a bushing replacement option that fits your budget.
While most cars are compatible with bushings, some iconic parts from premium brands like BMW and Mercedes require special tools to replace. If you are not confident in your mechanical abilities, consider hiring a mechanic to do it. Mechanical replacement bushings typically range from $200 to $500. If you’re comfortable with mechanics and have some mechanical knowledge, you can save money by trying the job yourself. For example, control arm bushings range in price from $20 to $80. It is important to check the alignment after replacing the bushing to avoid further damage.
Control arm bushing replacements are usually relatively inexpensive, but you may need to replace several at the same time. You should check the prices of several mechanics before making a decision. You can easily save between $50 and $100 by comparing quotes. Plus, you’ll save a lot of money by finding the right mechanic for the job. You can also use an online comparison tool to compare prices. You can find a mechanic that suits your needs at an affordable price.
Control arm bushings are also an inexpensive way to replace parts of a car’s front or rear suspension. Typically, control arm bushings are made of two metal cylinders covered with a thick layer of rubber. They wear out due to accidents, potholes and off-roading. They are mounted with a bolt that goes through the inner barrel. It is important to replace these bushings as often as needed to improve operation.

China supplier Ec360blc Excavator Slewing Rings Swing Gear Slew Bearing 14563350   drive shaft bearingChina supplier Ec360blc Excavator Slewing Rings Swing Gear Slew Bearing 14563350   drive shaft bearing
editor by Dream 2024-04-23

China Professional 00: 0300: 07view Larger Imageadd to Compareshareouter Gear Turntable Bearing Slewing Ring for Excavator

Product Description

Product Description

Customized Fabrication of Cast and Forged Components

Welcome to our comprehensive custom fabrication services for cast and forged components. Our commitment to precision, quality, and versatility makes us your ideal partner for tailor-made solutions to meet your unique requirements.

Key Features:

1. **Versatile Customization:** We offer a wide array of customization options, including materials, manufacturing techniques, and on-site measurements. With independent design capabilities, we can bring your concepts to life, ensuring a product that aligns perfectly with your needs.

2. **Multiple Guarantees:** We prioritize your satisfaction and provide multiple guarantees to ensure a seamless experience. Payment is required prior to shipment, with support for various payment methods. Detailed drawings will be provided for your approval before production begins. Weekly progress reports, accompanied by images, will keep you informed about the status of your project, ensuring transparency throughout the process.

3. **Expertise in After-Sales Support:** Our commitment extends beyond the completion of your project. A dedicated and professional after-sales team is at your disposal, ready to provide maintenance and ongoing support whenever you require it.
 

Aspect Our Company Competitors
Customization Versatile options Limited choices
Design Capability Independent design Limited design input
Payment Flexibility Multiple options Restricted payment methods
Progress Updates Weekly detailed reports Irregular communication
After-Sales Support Dedicated professional team Limited support

Partner with us for an exceptional experience in custom cast and forged component fabrication. Your satisfaction is our priority, and we are dedicated to delivering products that meet your exact specifications. Contact us today to discuss your project and explore the possibilities of customized solutions tailored to your needs.

Company Profile

HangZhou Metal Co., Ltd. is a leading company based in HangZhou City, China, specializing in special steel and aluminum production. We also serve the mining, mineral, and cement industries, offering a range of integrated services, including manufacturing, engineering, and international trade. Our commitment to customer satisfaction is our top priority. We provide pre-sales assistance, transparent in-sales support, and comprehensive after-sales service to ensure lasting partnerships and success.

After Sales Service

At HangZhou Metal Co., Ltd., we prioritize excellent after-sales service for our customers. Our dedicated team is committed to providing support and assistance beyond the initial purchase. Here’s what our after-sales service includes:

1. Technical Support: Our experts are available to provide guidance and troubleshooting for seamless product usage.

2. Warranty Coverage: We provide timely resolutions for any manufacturing defects or issues through our warranty coverage.

3. Spare Parts: We keep a comprehensive inventory of spare parts to minimize downtime and ensure smooth operations.

4. Training: We offer programs to optimize product usage and enhance your skills.

5. Feedback and Improvement: We value your input to continuously improve our products and services.

FAQ

1. What is your minimum order quantity?
   Our minimum order quantity typically ranges from 100 to 500 pieces, depending on the product and material.

2. Can you provide custom designs?
   Yes, we specialize in providing custom designs based on your specific requirements.

3. What is your production capacity?
   Our production capacity varies depending on the product and material, but we have the capability to produce millions of pieces per year.

4. What is your lead time for orders?
   Our lead time for orders is typically 4-6 weeks for production and delivery.

5. Do you offer quality control and testing?
   Yes, we have strict quality control measures in place and offer testing services, including non-destructive testing, to ensure the quality of our products.

Please contact us with your project specifications and 1 of our sales representatives will provide you with a quote within 48 hours. We look CHINAMFG to the opportunity to work with you.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 10 Years
Warranty: 10 Years
Condition: New
Certification: CE, RoHS, GS, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Customized: Customized
Customization:
Available

|

Can you describe the factors to consider when selecting slewing rings for specific applications?

When selecting slewing rings for specific applications, several factors need to be considered to ensure optimal performance and reliability. Here’s a detailed description of the factors to consider:

  • Load Requirements: The load capacity of the slewing ring should match the anticipated loads in the application. Consider both the maximum static load (weight of the structure or equipment) and dynamic load (forces during operation). It is crucial to analyze the load distribution, including axial, radial, and moment loads, and select a slewing ring with sufficient load-carrying capacity to handle these loads.
  • Space Limitations: Evaluate the available space for the installation of the slewing ring. Consider the diameter, height, and width of the slewing ring to ensure it fits within the space constraints of the application. It is essential to consider both the external dimensions of the slewing ring and the required clearance for rotation.
  • Rotational Speed: Determine the required rotational speed of the slewing ring. Consider the application’s operating speed and any specific speed limitations. The slewing ring should be selected to accommodate the rotational speed requirements while maintaining smooth and efficient operation.
  • Environmental Conditions: Evaluate the operating environment of the application. Factors such as temperature, humidity, dust, water exposure, chemicals, and corrosive elements should be considered. Choose a slewing ring with appropriate sealing systems, corrosion-resistant materials, and lubrication options to withstand the specific environmental conditions.
  • Accuracy and Positioning: Some applications require precise positioning and rotational accuracy. Determine the required level of accuracy and select a slewing ring that provides the necessary precision. Factors such as gear mechanism, backlash control, and manufacturing tolerances contribute to the accuracy of the slewing ring.
  • Operating Conditions: Consider the overall operating conditions of the application, including factors such as shock and vibration levels, duty cycle, continuous or intermittent operation, and expected service life. The slewing ring should be designed to withstand the anticipated operating conditions and provide reliable performance over the desired lifespan.
  • Integration and Compatibility: Assess the integration requirements of the slewing ring with the rest of the system or equipment. Consider factors such as mounting interfaces, connection points, gear compatibility, and the need for additional components such as drive systems or bearings. Ensure that the selected slewing ring is compatible with the existing or planned system components.
  • Industry Standards and Regulations: Depending on the application, specific industry standards and regulations may apply. Consider any applicable standards, such as ISO specifications or industry-specific guidelines, to ensure compliance and safety in the selection of the slewing ring.

By carefully analyzing these factors and selecting a slewing ring that meets the specific requirements of the application, one can ensure optimal performance, longevity, and reliability of the slewing ring in its intended use.

Can slewing rings be customized for specific industries or machinery configurations?

Yes, slewing rings can be customized to meet the specific requirements of different industries or machinery configurations. Customization allows slewing rings to be tailored to suit unique applications, operating conditions, and integration needs. Here’s a detailed explanation of how slewing rings can be customized:

Slewing ring manufacturers understand that different industries and machinery configurations may have specific demands that require customized solutions. By working closely with customers and understanding their requirements, slewing ring manufacturers can offer the following customization options:

  • Dimensions and Load Capacity: Slewing rings can be customized in terms of their dimensions, such as outer diameter, inner diameter, and height, to fit specific space constraints or load requirements. This ensures that the slewing ring can be seamlessly integrated into the machinery or equipment.
  • Mounting Interfaces: Customized slewing rings can be designed with specific mounting interfaces to match the existing or planned machinery configuration. This facilitates easy installation and compatibility with other components.
  • Gear Specifications: For applications that require integrated gears, slewing rings can be customized with specific gear specifications. This includes the number of teeth, module, pressure angle, gear quality, and backlash requirements. Customized gear specifications ensure smooth and precise motion control.
  • Sealing Systems: Slewing rings can be customized with sealing systems to provide protection against environmental factors such as dust, water, and contaminants. Different sealing options, such as labyrinth seals, lip seals, or combination seals, can be tailored to meet the specific requirements of the application.
  • Materials and Coatings: Customization allows slewing rings to be manufactured using different materials and surface coatings to enhance their performance in specific industries or operating conditions. Materials such as stainless steel, heat-treated steels, or corrosion-resistant alloys can be chosen based on factors like temperature, corrosion resistance, or weight considerations.
  • Specialized Features: Depending on the industry or application, slewing rings can be customized with specialized features. This may include integrated sensors for position feedback, temperature sensors, or additional functionalities like locking mechanisms, lubrication systems, or anti-corrosion treatments.

The ability to customize slewing rings for specific industries or machinery configurations ensures that the resulting solution is optimized for performance, reliability, and longevity in the intended application. Customization allows for a precise match between the slewing ring and the machinery, considering factors such as space constraints, load requirements, environmental conditions, and integration needs.

It is important to work closely with slewing ring manufacturers or suppliers who have expertise in customization and can provide engineering support to develop the most suitable solution for the specific industry or machinery configuration. By leveraging customization options, industries can benefit from slewing rings that are specifically designed to meet their unique requirements and optimize the performance of their machinery or equipment.

How does the choice of slewing rings affect the overall performance and reliability of rotating systems?

The choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. The selection of the appropriate slewing ring involves considering various factors such as load capacity, operating conditions, precision requirements, and application-specific needs. Here’s a detailed explanation of how the choice of slewing rings affects the overall performance and reliability of rotating systems:

  • Load Capacity: The load capacity of the slewing ring is a critical factor in determining the performance and reliability of the rotating system. Choosing a slewing ring with an adequate load capacity ensures that the system can handle the expected loads without excessive stress or deformation. If the selected slewing ring has insufficient load capacity for the application, it can lead to premature failure, increased wear, and compromised reliability.
  • Operating Conditions: The operating conditions, including factors such as temperature, humidity, dust, and exposure to corrosive substances, influence the choice of slewing rings. It is essential to select a slewing ring that is designed to withstand the specific environmental conditions of the application. Failure to consider the operating conditions can result in accelerated wear, corrosion, reduced performance, and decreased reliability of the rotating system.
  • Precision Requirements: Some applications require high precision and accuracy in the movement and positioning of the rotating system. The choice of slewing ring with appropriate precision is crucial to meet these requirements. Slewing rings designed for precision applications incorporate features such as high-precision raceways, gear teeth, or preloading mechanisms. Selecting a slewing ring with inadequate precision can lead to inaccuracies, positioning errors, and compromised performance of the rotating system.
  • Material Selection: The choice of materials for the slewing ring affects its durability, resistance to wear, and overall reliability. Different materials, such as carbon steel, stainless steel, or specialized alloys, have varying properties and performance characteristics. The selection of the appropriate material depends on factors such as load requirements, operating conditions, and the presence of corrosive or abrasive elements. Choosing the wrong material can result in premature wear, reduced lifespan, and compromised reliability of the rotating system.
  • Sealing and Lubrication: Slewing rings require proper sealing and lubrication to ensure smooth operation and prevent contamination or inadequate lubrication. The choice of slewing rings with effective sealing mechanisms and suitable lubrication requirements is crucial for maintaining performance and reliability. Inadequate sealing or improper lubrication can lead to increased friction, accelerated wear, and decreased reliability of the rotating system.
  • Manufacturer and Quality: The choice of a reputable manufacturer and high-quality slewing rings is essential for ensuring reliability and performance. Reliable manufacturers adhere to stringent quality control processes, use advanced manufacturing techniques, and provide comprehensive technical support. Choosing slewing rings from trusted manufacturers reduces the risk of premature failures, ensures consistent performance, and enhances the overall reliability of the rotating system.

In summary, the choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. Considering factors such as load capacity, operating conditions, precision requirements, material selection, sealing and lubrication, and the reputation of the manufacturer helps in selecting the appropriate slewing rings. By making the right choice, the rotating system can operate efficiently, withstand expected loads, maintain precision, and provide reliable performance throughout its lifespan.

China Professional 00: 0300: 07view Larger Imageadd to Compareshareouter Gear Turntable Bearing Slewing Ring for Excavator  China Professional 00: 0300: 07view Larger Imageadd to Compareshareouter Gear Turntable Bearing Slewing Ring for Excavator
editor by CX 2024-04-12

China Best Sales Excavator Internal Gear Slewing Rings Replacement Sk200-1

Product Description

1. Company introduction 

HangZhou King Slewing Bearing Technology Co.,Ltd.is a professional manufacturer and exporter of excavator slewing rings, its factory is located in HangZhou city, ZheJiang Province,very close to ZheJiang Port, goods can be easily transported all over the world.

Our main product is excavator slewing rings, we can now produce more than 1000 part numbers to match with many famous excavator brands, such as CATERPILLAR, KOMATSU, HITACHI, KOBELCO, HYUNDAI, VOLVO, DOOSAN, LIEBHERR, DAEWOO, JCB,CASE, SUMITOMO, KATO,etc. 

Our engineers have more than 20 years rich experience in studying excavator slewing rings and we have professional measuring team can go to customers ‘ workplace  to measure the old or broken slewing rings, then to produce the same replacements. We have our own factory with latest CNC machines , such as vertical lathes, gear hobbing machines, gear shaping machines, hole drilling mahines, quenching machines, vertical grinding machines, turning machines,etc. to meet customers’ quick delivery requirements. 

We will adhere to the “quality first, credibility first” business philosophy and continually provide our clients with superior quality products and services. We warmly welcome customers from all over the world to visit us and together to build a better future !

2. Our slewing rings can match with more than 1000 excavator models. 

3. Our excavator part numbers as below:

CAT Slewing Ring Replacement 
Excavator model number Part number Excavator model number Part number
CAT 307   102-6377 CAT 325C 227-6087 
CAT 307C   240-8361 CAT 325 199-4483
CAT 308C   240-8362 CAT 325 4178151
CAT 312CL  229-1077 CAT 325 3530676
CAT 311    231-6853 CAT 325 2316854
CAT 312B    616411 CAT 325CL  199-4475
CAT 312CL  229-1077 CAT 326 353-0649
CAT 312C 229-1077 CAT 329D      227-6087
CAT 315  148-4568 CAT 330  7Y571
CAT 318B  148-4568 CAT 330   1994559
CAT M315 M318 145-4809 CAT 330  353-0487
CAT 315C   229-1080 CAT 330B   231-6859
CAT 319C  227-6079 CAT 330B   114-1434
CAT320B  1141414 CAT 330D 227-6089 
CAT320BL   121-8222 CAT 330C  227-6089 
CAT 320  7Y1565 CAT330D/DL 227-6090
CAT 320B      114-1505 CAT 336D   353-0489
CAT 320BL   177-7723 CAT 336DL         227-6089 
CAT 320BL    114-1341 CAT 336DL   353-0680  
CAT 320C 227-6081 CAT 336D   353-0490
CAT 320C 227-6147 CAT 345   227-6052
CAT 320C 171-9425 CAT 345B     136-2969
CAT 320D 227-6082 CAT 345B      200-3645
CAT 320L 7Y1563 CAT 345BII   227-6094
CAT 320L 7Y1563  CAT 345BL    136-2970
CAT 225 8K4127 CAT 345BL    169-5536/169-5537
CAT 322C   221-6764 CAT 345DL  227-6037
CAT 324D    227-6085 CAT 345ECL   227-6052
CAT 325  7Y 0571 CAT 349D  353-0490
CAT 350   1026392 CAT374  333-3009
CAT 365C   199-4565 CAT374  367-8361
CAT 365C  227-6096 CAT 385C 199-4491
CAT 365C  227-6097 CAT 385C 227-6099
CAT 365C  199-4586 CAT 385BL  227-6098
CAT 365CL   267-6793 CAT 385CL  227-6099
CAT 365CL    397-9666 CAT 390D 227-6099
CAT374F
 
378-9586     

4. Our excavator slewing ring pictures

5. Our slewing bearing packaging pictures 

6. Transportation way: By sea/ air/ rail/ road/ TNT/DHL/UPS/Fedex,ect. 

7. Contact information
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: Short Delivery Time
Sealing Gland: We Use Seal Rings
Rolling-Element Number: Single Row, Three Row for Huge Slewing Bearing
Roller Type: Four Point Contact
Material: Alloy Steel
Samples:
US$ 1000/Set
1 Set(Min.Order)

|

Customization:
Available

|

What are the signs that indicate a need for slewing ring replacement or maintenance, and how can they be diagnosed?

When it comes to slewing rings, certain signs indicate the need for replacement or maintenance to ensure optimal performance and prevent potential failures. Here’s a detailed explanation of the signs that indicate a need for slewing ring replacement or maintenance, along with methods for diagnosis:

  • Unusual Noise: Unusual noises, such as grinding, clicking, or squealing sounds, during the operation of rotating systems may indicate a problem with the slewing ring. These noises can be caused by worn-out or damaged rolling elements, insufficient lubrication, misalignment, or other issues. Diagnosis involves conducting a thorough inspection of the slewing ring and its components to identify the source of the noise and determine the appropriate course of action.
  • Abnormal Vibration: Excessive vibration during the operation of rotating systems can be a warning sign of a faulty slewing ring. It may indicate misalignment, imbalanced loads, damaged rolling elements, or worn-out bearings. Vibration analysis techniques, such as using vibration sensors or analyzers, can help diagnose the source and severity of the vibration. Based on the analysis results, appropriate maintenance or replacement actions can be taken.
  • Irregular Movement: Any irregular movement or jerking motion of the rotating system can be an indication of a problem with the slewing ring. It may be caused by damaged or worn-out teeth on the slewing ring, misalignment, or inadequate lubrication. Visual observation of the system’s movement during operation can help identify any irregularities. Additionally, conducting a detailed inspection of the slewing ring and its teeth can provide further insight into the issue.
  • Increased Friction: If there is a noticeable increase in friction or resistance during the rotation of the system, it could be a sign of a problem with the slewing ring. This may be due to insufficient or contaminated lubrication, damaged rolling elements, or misalignment. Diagnosis involves checking the lubrication levels and quality, inspecting the rolling elements for signs of damage, and verifying the alignment of the slewing ring.
  • Uneven or Excessive Wear: Visual inspection of the slewing ring can reveal signs of uneven or excessive wear. This can manifest as worn-out or pitted rolling elements, damaged or missing teeth, or abnormal wear patterns on the raceways. Regular inspections and comparing the current condition with the manufacturer’s specifications or previous inspection records can help diagnose the level of wear and determine if maintenance or replacement is necessary.
  • Leakage or Contamination: Leakage of lubricant or the presence of contaminants, such as dirt, water, or debris, in the slewing ring assembly can be indicative of a problem. It may lead to inadequate lubrication, accelerated wear, or corrosion. Visual inspection of the slewing ring and any associated seals or gaskets can help identify any signs of leakage or contamination. Addressing the source of the leakage and ensuring proper sealing is essential to maintain the integrity and performance of the slewing ring.
  • Reduced Load-Carrying Capacity: If the rotating system experiences difficulty in handling its intended loads or shows signs of decreased load-carrying capacity, it may indicate an issue with the slewing ring. Factors such as worn-out rolling elements, damaged raceways, or misalignment can contribute to the reduction in load-carrying capacity. Performance testing and comparing the system’s current capabilities with its original specifications can help diagnose any loss in load-carrying capacity.

In summary, signs that indicate a need for slewing ring replacement or maintenance include unusual noise, abnormal vibration, irregular movement, increased friction, uneven or excessive wear, leakage or contamination, and reduced load-carrying capacity. These signs can be diagnosed through visual inspections, vibration analysis, performance testing, and comparing the observed conditions with the manufacturer’s specifications. Early detection and timely maintenance or replacement of the slewing ring can prevent further damage, ensure safe operation, and extend the lifespan of the rotating system.

How do slewing rings contribute to the adaptability and versatility of rotating systems in various settings?

Slewing rings play a crucial role in enhancing the adaptability and versatility of rotating systems across various settings. Here’s a detailed explanation of how slewing rings contribute to the adaptability and versatility of rotating systems:

  • 360-Degree Rotation: Slewing rings enable 360-degree continuous rotation, allowing rotating systems to operate in any direction. This flexibility is especially valuable in applications such as cranes, excavators, and wind turbines, where unrestricted rotation is necessary to perform tasks efficiently and access multiple work zones without repositioning the entire system.
  • Load-Bearing Capacity: Slewing rings are designed to handle significant radial, axial, and moment loads. Their robust construction and large diameter enable them to support heavy equipment and loads, making them suitable for a wide range of applications, including construction machinery, material handling systems, and offshore platforms. The high load-bearing capacity of slewing rings contributes to the adaptability of rotating systems in demanding settings.
  • Compact Design: Slewing rings have a compact and space-saving design compared to alternative mechanisms for rotational movement. This compactness allows for the integration of slewing rings into systems where space is limited, such as compact construction machinery, industrial robots, and medical equipment. The compact design of slewing rings enhances the adaptability of rotating systems in confined or restricted environments.
  • Versatile Mounting Options: Slewing rings offer versatile mounting options, allowing them to be easily integrated into different types of rotating systems. They can be mounted using various methods, including bolted connections, gear or pinion arrangements, or hydraulic or electric drives. This versatility in mounting options enables slewing rings to adapt to the specific requirements and constraints of different applications and settings.
  • Support for Multiple Components: Slewing rings provide support for various components that are essential for rotating systems. For example, they can support booms, arms, or jibs in construction machinery, or act as a base for rotating platforms or turntables in manufacturing or entertainment industries. By providing a stable and reliable foundation, slewing rings enable the integration of multiple components, enhancing the versatility and adaptability of the overall system.
  • Customization and Specialized Designs: Slewing rings can be customized and designed to meet specific application requirements. Manufacturers can tailor slewing rings to accommodate specific load capacities, dimensions, mounting arrangements, sealing systems, or environmental conditions. This customization allows for the adaptation of slewing rings to diverse settings, ensuring optimal performance and functionality.
  • Integration with Control Systems: Slewing rings can be integrated with electronic or computer-controlled components, such as sensors, actuators, and control systems. This integration enables precise control, automation, and synchronization of rotating systems. By incorporating advanced control features, slewing rings can adapt to dynamic operating conditions, optimize performance, and support advanced functionalities, such as coordinated motion, precision positioning, or remote monitoring.

In summary, slewing rings contribute to the adaptability and versatility of rotating systems by enabling 360-degree rotation, providing high load-bearing capacity, offering a compact design, supporting versatile mounting options, accommodating multiple components, allowing customization, and facilitating integration with control systems. These characteristics make slewing rings suitable for a wide range of applications and settings, enhancing the versatility and adaptability of rotating systems in industries such as construction, manufacturing, transportation, renewable energy, and many others.

What are the different types and configurations of slewing rings available in the market?

Slewing rings are available in various types and configurations to cater to the diverse needs of different applications. The following are the different types and configurations of slewing rings commonly available in the market:

  • Single-Row Ball Slewing Rings: This type of slewing ring consists of a single row of balls placed between two rings. It offers compact design, low weight, and high load-carrying capacity. Single-row ball slewing rings are commonly used in applications where axial and radial loads need to be supported.
  • Double-Row Ball Slewing Rings: Double-row ball slewing rings have two rows of balls, providing higher load-carrying capacity compared to single-row designs. They are suitable for applications that require increased load capacity and improved stiffness.
  • Three-Row Roller Slewing Rings: Three-row roller slewing rings feature three rows of rollers arranged in a crisscross pattern. This configuration allows for higher load-carrying capacity and increased rigidity. Three-row roller slewing rings are commonly used in heavy-duty applications where significant radial, axial, and moment loads need to be supported.
  • Ball and Roller Combination Slewing Rings: In some cases, slewing rings are designed with a combination of ball and roller elements. This configuration provides a balance between load capacity and reduced friction. It offers improved rotational characteristics and is often used in applications requiring high load capacity and smooth rotation.
  • Internal Gear and External Gear Slewing Rings: Slewing rings can be equipped with internal or external gears. Internal gear slewing rings have the gear teeth on the inner ring, while external gear slewing rings have the gear teeth on the outer ring. The gear mechanism allows for controlled rotation and can be driven by external components such as motors or hydraulic systems. The choice between internal or external gear configuration depends on the specific application requirements.
  • Non-Gear Slewing Rings: Some slewing rings are designed without integrated gears. These non-gear slewing rings are often used in applications where the rotation is driven by external components or when a separate gear mechanism is already in place.
  • Customized and Specialized Slewing Rings: In addition to the standard types and configurations, slewing rings can be customized and designed to meet specific application requirements. Customized slewing rings may involve variations in dimensions, load capacity, gear specifications, sealing systems, or materials to suit unique applications or challenging operating conditions.

The availability of different types and configurations of slewing rings allows for the selection of the most suitable design based on factors such as load requirements, space limitations, rotational speed, environmental conditions, and application-specific needs. It is essential to consider these factors when choosing a slewing ring to ensure optimal performance and reliability in the intended application.

China Best Sales Excavator Internal Gear Slewing Rings Replacement Sk200-1  China Best Sales Excavator Internal Gear Slewing Rings Replacement Sk200-1
editor by CX 2024-04-04