Tag Archives: bearing steel

China OEM Hot Sale 4140 Alloy Steel Forged Gear Ring for Construction Machinery, Forging Slewing Bearing with CNC Machining for Marine

Product Description

Products: Free Forging and Open Die Forging factory. 

 

Our factory: 
A. More than 25 years of professional free forging and open-die forging manufacturing experience
B. The company covers an area of 71,000 square CHINAMFG
C. The construction area of the production workshop is 12,000 square CHINAMFG
D. Total number of employees: 158
E. 28 engineering and technical personnel
F. 59 skilled workers
G. Annual production capacity is 38,000 tons
H. Annual raw material steel throughput turnover reaches 56,000 tons

Our Forged Steel Products
Tiangong Forging supplies a variety of semi-finished forged steel products, with the main materials being nickel-molybdenum steel, alloy steel, die steel, stainless steel and carbon steel. In addition to general steel grades such as 35#, 45#, 42CrMo, 42CrMo4, 18CrNiMo7-6, 20CrNi2Mo, 30CrNiMo8 and etc., we can also prepare the required steel according to other national specifications or specified alloy compositions requested by customers.

The maximum production shaft forging length/weight is 12m/15T; the maximum gear and wheel forging diameter/weight is 1.9m/9T.
We are particularly specialized in the forging of special-shaped forging parts.


steel hot forging raw forging gear shaft 
 

Description

Steel hot forging raw forging gear shaft       
Forged Gear Blank
Wheel and Pulley
Forged Shaft
Hollow Shaft
Crankshaft
Multi-stepped Shaft
Various forged blank and block
 Special-shaped Forging Parts                                 

Type

Free forging. 

Application

Wind power Transformisson system , machinery and other industry

Processing

Forging+machining+heating Treatment

Material

steel SAE 4340, 4140,C45,42CrMo4,20CrMnTi,

Weight Ranges

0.1kg-50tons

Roughness

Ra0.4 – 0.8

Our Certificates:  

Our Lab equipment:  

Our main Products:  

A.Forged Gear Blank
B.Wheel and Pulley
C.Forged Shaft
D.Hollow Shaft
E.Crankshaft
F.Multi-stepped Shaft
G.Various forged blank and block
 I. Special-shaped Forging Parts

Application:  
Our main customers: ZPMC, CHINAMFG and ZheJiang Electric etc.

Our parts are widely used in Chemical Industry, Wind power generator, Large machinery parts Chemical industry,Agricultural machinery parts ship shaft fittings. Wind Power gearbox Transmission system. 

HangZhou Port, HangZhou automatic Port, ZheJiang Yang shan Port, Italy Vado port. ZheJiang Tailway crane, Egypt hanging bridge, Sri Lanka railway crane, Thailand port bridge. South Korea railway crane, Hongkong island bridge, Singapore railway crane, Russia oil & mining machines and some miltary project. etc.

Customized solutions
Our modular process allows us to design solutions various industrial application requiring free-forged and open-die-forged parts. Our modularity means flexibility, wide choice, faster delivery and, above all, competitiveness.

All Tiangong Forging, products and production processes are designed to ensure exceptional, reliable and long-lasting unique mechanical properties, thereby reducing operating costs and extending service life.
With an extensive product range and extensive experience gained in most industrial applications, we can also provide engineering advice to our customers.

Welcome to visit our factory!  Welcome to send inquiry to us.  

Welcom Trading compamy to co-operate.  

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Free Forging
Samples:
US$ 1000/Ton
1 Ton(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

In what industries or scenarios are slewing rings commonly employed?

Slewing rings find extensive use in various industries and scenarios where controlled rotational movement and load-bearing capabilities are required. Here’s a detailed explanation of the industries and scenarios where slewing rings are commonly employed:

  • Construction and Heavy Machinery: Slewing rings are widely used in the construction industry for applications such as cranes, excavators, and concrete pumps. They enable the rotation of booms and arms, allowing for efficient material handling, precise positioning, and heavy load support.
  • Wind Energy: Slewing rings play a crucial role in wind turbines. They support the rotor and enable the yaw and pitch movements necessary to optimize wind capture and power generation. Slewing rings in wind turbines must handle substantial loads and operate reliably in harsh environmental conditions.
  • Industrial Automation: In industrial automation, slewing rings are employed in indexing tables, turntables, robotic arms, and packaging machinery. They enable precise and controlled rotation, facilitating automated processes, assembly lines, and material handling systems.
  • Transportation and Automotive: Slewing rings are commonly used in transportation and automotive applications, including vehicle cranes, truck-mounted cranes, aerial platforms, and rotating platforms for heavy-duty vehicles. They provide stable connections and controlled rotation, supporting tasks such as loading and unloading cargo or enabling safe access to elevated areas.
  • Marine and Offshore: Slewing rings are extensively employed in marine and offshore equipment, including ship cranes, davits, and rotating platforms on ships and offshore rigs. They withstand corrosive marine environments and heavy loads, enabling lifting operations and controlled rotation in challenging conditions.
  • Aerospace and Defense: Slewing rings are vital components in aerospace and defense applications, such as radar systems, missile launchers, and satellite antennas. They facilitate precise rotational movements required for tracking, targeting, and communication systems, and must meet stringent requirements for reliability and precision.
  • Medical and Rehabilitation: Slewing rings are used in medical and rehabilitation equipment like patient lifts, adjustable beds, and examination tables. They enable smooth and controlled movement, aiding in patient transfers, positioning, and providing comfort and support.

These are just a few examples of the industries and scenarios where slewing rings are commonly employed. Their versatility, load-bearing capacity, and ability to facilitate controlled rotation make them essential components in a wide range of applications across industries such as construction, renewable energy, industrial automation, transportation, marine, aerospace, and healthcare.

Can you describe the factors to consider when selecting slewing rings for specific applications?

When selecting slewing rings for specific applications, several factors need to be considered to ensure optimal performance and reliability. Here’s a detailed description of the factors to consider:

  • Load Requirements: The load capacity of the slewing ring should match the anticipated loads in the application. Consider both the maximum static load (weight of the structure or equipment) and dynamic load (forces during operation). It is crucial to analyze the load distribution, including axial, radial, and moment loads, and select a slewing ring with sufficient load-carrying capacity to handle these loads.
  • Space Limitations: Evaluate the available space for the installation of the slewing ring. Consider the diameter, height, and width of the slewing ring to ensure it fits within the space constraints of the application. It is essential to consider both the external dimensions of the slewing ring and the required clearance for rotation.
  • Rotational Speed: Determine the required rotational speed of the slewing ring. Consider the application’s operating speed and any specific speed limitations. The slewing ring should be selected to accommodate the rotational speed requirements while maintaining smooth and efficient operation.
  • Environmental Conditions: Evaluate the operating environment of the application. Factors such as temperature, humidity, dust, water exposure, chemicals, and corrosive elements should be considered. Choose a slewing ring with appropriate sealing systems, corrosion-resistant materials, and lubrication options to withstand the specific environmental conditions.
  • Accuracy and Positioning: Some applications require precise positioning and rotational accuracy. Determine the required level of accuracy and select a slewing ring that provides the necessary precision. Factors such as gear mechanism, backlash control, and manufacturing tolerances contribute to the accuracy of the slewing ring.
  • Operating Conditions: Consider the overall operating conditions of the application, including factors such as shock and vibration levels, duty cycle, continuous or intermittent operation, and expected service life. The slewing ring should be designed to withstand the anticipated operating conditions and provide reliable performance over the desired lifespan.
  • Integration and Compatibility: Assess the integration requirements of the slewing ring with the rest of the system or equipment. Consider factors such as mounting interfaces, connection points, gear compatibility, and the need for additional components such as drive systems or bearings. Ensure that the selected slewing ring is compatible with the existing or planned system components.
  • Industry Standards and Regulations: Depending on the application, specific industry standards and regulations may apply. Consider any applicable standards, such as ISO specifications or industry-specific guidelines, to ensure compliance and safety in the selection of the slewing ring.

By carefully analyzing these factors and selecting a slewing ring that meets the specific requirements of the application, one can ensure optimal performance, longevity, and reliability of the slewing ring in its intended use.

What advantages do slewing rings offer compared to other rotational components?

Slewing rings offer several advantages compared to other rotational components. Their unique design and features make them a preferred choice in various applications. Here’s a detailed explanation of the advantages that slewing rings offer:

  • Compact Design: Slewing rings have a compact design that allows for efficient use of space. Compared to other rotational components such as gears and bearings, slewing rings provide a compact solution for supporting axial, radial, and moment loads while enabling rotational motion. Their compactness is especially advantageous in applications with limited space or weight constraints.
  • High Load-Carrying Capacity: Slewing rings are designed to handle significant loads. They are capable of supporting both axial and radial loads, as well as moment loads that result from uneven weight distribution or external forces. The robust construction and precise engineering of slewing rings enable them to withstand heavy loads, making them suitable for applications that require high load-carrying capacity.
  • Smooth Rotation: Slewing rings offer smooth rotation, allowing for precise and controlled motion. The rolling elements, whether balls or rollers, are positioned and guided within the raceways of the slewing ring to minimize friction and ensure smooth movement. This smooth rotation contributes to precise positioning and controlled motion, which is essential in applications that require accurate positioning and smooth operation.
  • Integrated Gear Mechanism: Many slewing rings come with an integrated gear mechanism. This eliminates the need for additional gearing components, simplifies the design, and reduces assembly time and costs. The integrated gear mechanism allows for torque transmission and rotational control, enabling precise and controlled motion without the need for external gearing systems.
  • Backlash Control: Slewing rings can be designed with minimal backlash, ensuring precise motion control. Backlash refers to the play or clearance between mating gears or components, which can lead to lost motion or inaccuracies in positioning. By minimizing backlash, slewing rings offer improved accuracy and repeatability in motion control applications.
  • Versatility and Customization: Slewing rings are highly versatile and can be customized to meet specific application requirements. They can be tailored in terms of dimensions, load capacity, mounting interfaces, gear specifications, sealing systems, and materials. This versatility allows slewing rings to be optimized for various industries and applications, ensuring the best performance and compatibility.
  • Durable and Low Maintenance: Slewing rings are designed to be durable and require minimal maintenance. They are constructed with high-quality materials, precision manufacturing, and appropriate sealing systems to withstand harsh operating conditions and contaminants. This durability and low maintenance requirement contribute to the long service life and reliability of slewing rings.

Overall, slewing rings offer advantages such as compact design, high load-carrying capacity, smooth rotation, integrated gear mechanism, backlash control, versatility, customization options, and durability. These advantages make slewing rings a preferred choice in various applications, including construction machinery, material handling equipment, cranes, wind turbines, robotics, and manufacturing systems.

China OEM Hot Sale 4140 Alloy Steel Forged Gear Ring for Construction Machinery, Forging Slewing Bearing with CNC Machining for Marine  China OEM Hot Sale 4140 Alloy Steel Forged Gear Ring for Construction Machinery, Forging Slewing Bearing with CNC Machining for Marine
editor by Dream 2024-05-16

China Good quality Stainless Steel Ball Bearings with Ceramic Ball Ss608zz Cer Radial Spherical Plain Bearing Slewing Bearing Spare Parts 1688

Product Description

SUS420 RING Nylon cage Si3N4 ball  P5 quality.High precision for skateboard roller.Long time life.Lubrecation free. 

Item   NO. ID OD Width Weight Item No. ID OD Width Weight
Open Closed   Open Closed  
SS603 3 9 3 3 0.0140 SS634 4 16 5 5 0.0054
SS604 4 12 4 4 0.571 SS635 5 19 6 6 0.0089
SS605 5 14 5 5 0.0037 SS636 6 22 7 7 0.0145
SS606 6 17 6 6 0.0069 SS637 7 26 9 9 0.5718
SS607 7 19 6 6 0.0082 SS638 8 28 9 9 0.0303
SS608 8 22 7 7 0.0013 SS639 9 30 10 10 0.571
SS609 9 24 7 7 0.0160 SS6300 10 35 11 11 0.571
SS6000 10 26 8 8 0.0190 SS6301 12 37 12 12 0.0600
SS6001 12 28 8 8 0.5710 SS6302 15 42 13 13 0.0820
SS6002 15 32 9 9 0.0300 SS6303 17 47 14 14 0.1150
SS6003 17 35 10 10 0.0390 SS6304 20 52 15 15 0.1490
SS6004 20 42 12 12 0.0690 SS6305 25 62 17 17 0.2320
SS6005 25 47 12 12 0.0800 SS6306 30 72 19 19 0.3490
SS6006 30 55 13 13 0.1160 SS6307 35 80 21 21 0.4570
SS6007 35 62 14 14 0.1550 SS6308 40 90 23 23 0.6300
SS6008 40 68 15 15 0.1920 SS6309 45 100 25 25 0.8140
SS6009 45 75 16 16 0.2450 SS6310 50 110 27 27 1.0700
SS6571 50 80 16 16 0.2610 SS6311 55 120 29 29 1.3700
SS6011 55 90 18 18 0.3880 SS6312 60 130 31 31 1.7300
SS6012 60 95 18 18 0.4140 SS6700 10 15 4 4 0.0019
SS6013 65 100 18 18 0.4210 SS6701 12 18 4 4 0.0031
SS6014 70 110 20 20 0.6040 SS6702 15 21 4 4 0.0036
SS623 3 10 4 4 0.0016 SS6703 17 23 4 4 0.0040
SS624 4 13 5 5 0.0032 SS6704 20 27 4 4 0.0059
SS625 5 16 5 5 0.0051 SS6705 25 32 4 4 0.0070
SS626 6 19 6 6 0. SS6706 30 37 4 4 0.0083
SS627 7 22 7 7 0.0131 SS6707 35 44 5 5 0.0150
SS628 8 24 8 8 0.0170 SS6708 40 50 6 6 0.5710
SS629 9 26 8 8 0.0191 SS6709 45 55 6 6 0.5710
SS6200 10 30 9 9 0.0320 SS6710 50 62 6 6 0.0340
SS6201 12 32 10 10 0.571 SS6711 55 68 7 7 0. 0571
SS6202 15 35 11 11 0.0450 SS684 4 9 2.5 4 0.571
SS6203 17 40 12 12 0.0650 SS685 5 11 3 5 0.0019
SS6204 20 47 14 14 0.1060 SS686 6 13 3.5 5 0.0571
SS6205 25 52 15 15 0.1280 SS687 7 14 3.5 5 0.0030
SS6206 30 62 16 16 0.1990 SS688 8 16 4 5 0.0038
SS6207 35 72 17 17 0.2880 SS689 9 17 4 5 0.0440
SS6208 40 80 18 18 0.3660 SS6800 10 19 5 5 0.0050
SS6209 45 85 19 19 0.3980 SS6801 12 21 5 5 0.0060
SS6210 50 90 20 20 0.4540 SS6802 15 24 5 5 0.0070
SS6211 55 100 21 21 0.6571 SS6803 17 26 5 5 0.0080
SS6212 60 110 22 22 0.7830 SS6804 20 32 7 7 0.0190
SS693 3 8 3 4 0.0008 SS6805 25 37 7 7 0.5710
SS694 4 11 4 4 0.0017 SS6806 30 42 7 7 0.0260
SS695 5 13 4 4 0.571 SS6807 35 47 7 7 0.5710
SS696 6 15 5 5 0.0036 SS6808 40 52 7 7 0.0330
SS697 7 17 5 5 0.0050 SS6809 45 58 7 7 0.0400
SS698 8 19 6 6 0.0076 SS6810 50 65 7 7 0.0520
SS699 9 20 6 6 0.0085 SS6811 55 72 9 9 0. 0571
SS6900 10 22 6 6 0.5710 SS6812 60 78 10 10 0.1060
SS6901 12 24 6 6 0.0120 SS6813 65 85 10 10 0.1250
SS6902 15 28 7 7 0.0180 SS6814 70 90 10 10 0.1350
SS6903 17 30 7 7 0.0190 SS6815 75 95 10 10 0.1450
SS6904 20 37 9 9 0.0380 SS6816 80 100 10 10 0.1550
SS6905 25 42 9 9 0.0440 SS6817 85 110 13 13 0.2650
SS6906 30 47 9 9 0.0500 SS6818 90 115 13 13 0.2800
SS6907 35 55 10 10 0.7500 SSMR84 4 8 2 3 0.0006
SS6908 40 62 12 12 0.1180 SSMR104 4 10 3 4 0.0013
SS6909 45 68 12 12 0.1280 SSMR85 5 8 2 2.5 0.0003
SS6910 50 72 12 12 0.1330 SSMR95 5 9 2.5 3 0.0006
SS6911 55 80 13 13 0.1770 SSMR105 5 10 3 4 0.0013
SS6912 60 85 13 13 0.1910 SSMR115 5 11 4 4 0.0006
SS6913 65 90 13 13 0.2000 SSMR106 6 10 2.5 3 0.0007
SS6914 70 100 16 16 0.3270 SSMR126 6 12 3 4 0.0017
SS6915 75 105 16 16 0.3450 SSMR166 6 16 6 6 0.0058
SS6916 80 110 16 16 0.3630 SSMR117 7 11 2.5 3 0.0007
SSR3 4.762 12.7 3.969 4.978 0.571 SSMR137 7 13 3 4 0.571
SSR4 6.35 15.875 4.978 4.978 0.0045 SSMR128 8 12 2.5 3.5 0.571
SSR4A 6.35 19.05 5.556 7.144 0.5710 SSMR148 8 14 3.5 4 0.0571
SSR6 9.525 22.225 5.556 7.144 0.0117 SSR144 3.175 6.35 2.78 2.78 0.0003
SSR8 12.7 28.575 6.35 7.938 0.5710 SSR155 3.969 7.938 2.779 3.175 0.0006
SSR10 15.875 34.925 7.144 8.731 0.0367 SSR156 4.762 7.938 2.779 3.175 0.0005
SSR12 19.05 41.275 7.938   0.0630 SSR166 4.762 9.525 3.175 3.175 0.0008
SSR12ZZ 19.05 41.275   11.112 / SSR168 6.35 9.525 3.175 3.175 0.0006
SSR14 22.225 47.625 9.525 12.7 0. 0571 SSR186 4.762 12.7 2.779 3.969 0.571
SSR16 25.4 50.8 9.525 12.7 0.1070 SSR1810 7.938 12.7 3.175 3.969 0.0017
SSR18 28.575 53.975 9.525 12.7 0.1220 SSR188 6.35 12.7 3.969 4.762 0.571
SSR20 31.75 57.15 9.525 12.7 0.1250            
SSR22 34.925 63.5 11.112 14.288 0.1650            
SSR24 38.1 66.675 11.112 14.288 0.1720          

 

product name product specifications
bicycle bearing  MH-P08F 30.5X41.8X8 45/45
bicycle bearing  ACB460H7 34.1X46X7 45/45
bicycle bearing  AC3344H6 33 X 44 X 6 – 36/45
bicycle bearing  AC3544H5.5 35 X 44 X 5.5 – 36/45
bicycle bearing  ACB518K 40X51.8X8 36/45
bicycle bearing  MH-P03K 30.15X41X6.5 36/45
bicycle bearing  MH-P22 34.1X46.9X7 45/45
bicycle bearing  MR136 32.8 X 41.8 X 6 – 45/45
bicycle bearing  MH-P25K 40X52X6.5 36/45
bicycle bearing  MR137 37 X 46.9 X 7 – 45/45
bicycle bearing  MH-P16K 40X52X7 36/45
bicycle bearing  MH-P08H7K 30.15X41.8X7 36/45
bicycle bearing  MH-P21 37X49X7 45/45
bicycle bearing  ACB519H8 40X51.9X8 45/45
bicycle bearing  TK410 30.15X41X7 45/45
bicycle bearing  MH-P03 30.15X41X6.5 45/45
bicycle bearing  ACB519H7 40*51.9*7  45/45
bicycle bearing  MH-P16 40X52X7 45/45
bicycle bearing  MH-P08H7 30.15X41.8X7 45/45
bicycle bearing  MH-P08 30.15X41.8X6.5 45/45
bicycle bearing  ACB518H8 40X51.8X8 45/45
bicycle bearing  MH-P16H8 40X52X8 45/45
bicycle bearing  AC3748H7 37 X 48 X 7 – 45/90
bicycle bearing  MH-P09K 27.15X38X6.5 36/45
bicycle bearing  MH-P08H7.7 30.5X41.8X7.7 45/45
bicycle bearing  MR22237-2RS 22.2 X 37 X 8/11.7
stainless steel bicycle bearing  SS MH-P16 40X52X7 45/45
bicycle bearing  ACB3547H7 35 X 47 X 7 – 36/45
bicycle bearing  FD6806-2RS  
bicycle bearing  ACB4051H6.5 40*51*6.5  45/45
bicycle bearing  MH-P08H8 30.5X41.8X8 45/45
bicycle bearing   MR19285-2RS  
bicycle bearing  18287-2RS  
bicycle bearing  MR2437H8-2RS 24 X 37 X 8
bicycle bearing  ACB3042H7 30X42X7  45/45
bicycle bearing  MR3040H7-2RS  
bicycle bearing  ACB619H8K 50*61.9*8 36/45
bicycle bearing  ACB3571K 30.1X41.8X8 36/45
bicycle bearing  17286-2RSC3  
bicycle bearing  MH-P09 27.15X38X6.3 45/45
bicycle bearing  MH-P17 34.1X46.8X7   45/45
bicycle bearing  MH-P04 30.15X39X6.5 45/45
bicycle bearing  ACB515H7 40*51.5*7 45/45
bicycle bearing  374807-2RS  
bicycle bearing  ACB872K 30.15X41.5X6.5 36/36
bicycle bearing  ACB510H7 40X51X7 – 45/45
bicycle bearing  6904/19.05-2RS  
bicycle bearing  ACB4252H7 42*52*7  45/45
bicycle bearing  MR397508-2RS  
bicycle bearing  15267-2RS  
bicycle bearing  AC50*61.9*8-2RS 36/45  
bicycle bearing  ACB394 39*46.9*7 45/45
bicycle bearing  MH-P08H7A 30.5*41.8*7 45/45
bicycle bearing  MR18307-2RS  

 

Detailed Photos

 

Company Profile

 

HangZhou WOLEE Industrial Co., Ltd was founded in 2015, The team and knowledge from 1 have 20years more history bearings manufacture. Now have some partner factory with bearings and another industrial area.

The company mainly operates bearings and other industrial components such as chain, guide rail, gear and micro gearbox. Its products are widely used in the fields of metallurgy, mining, papermaking, petrochemical, power, railway, aviation, cement, textile, machinery, etc., it has lots of clients among these fields and has accumulated rich experience to meet different demands of all sectors. At present, its trade scale expands increasingly, its clients are all across the world, and it wins the trust of home and abroad clients by virtue of good reputation.

The company adheres to the tenet of “people first, quality first, credit first and reputation first” and provides each client with top service.

It heartily hopes to join hands with you to create a wonderful world!

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Parts: Other Parts & Accessories
Material: Stainless Steel AISI420
Ball: ceramic

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

Can slewing rings be customized for specific industries or machinery configurations?

Yes, slewing rings can be customized to meet the specific requirements of different industries or machinery configurations. Customization allows slewing rings to be tailored to suit unique applications, operating conditions, and integration needs. Here’s a detailed explanation of how slewing rings can be customized:

Slewing ring manufacturers understand that different industries and machinery configurations may have specific demands that require customized solutions. By working closely with customers and understanding their requirements, slewing ring manufacturers can offer the following customization options:

  • Dimensions and Load Capacity: Slewing rings can be customized in terms of their dimensions, such as outer diameter, inner diameter, and height, to fit specific space constraints or load requirements. This ensures that the slewing ring can be seamlessly integrated into the machinery or equipment.
  • Mounting Interfaces: Customized slewing rings can be designed with specific mounting interfaces to match the existing or planned machinery configuration. This facilitates easy installation and compatibility with other components.
  • Gear Specifications: For applications that require integrated gears, slewing rings can be customized with specific gear specifications. This includes the number of teeth, module, pressure angle, gear quality, and backlash requirements. Customized gear specifications ensure smooth and precise motion control.
  • Sealing Systems: Slewing rings can be customized with sealing systems to provide protection against environmental factors such as dust, water, and contaminants. Different sealing options, such as labyrinth seals, lip seals, or combination seals, can be tailored to meet the specific requirements of the application.
  • Materials and Coatings: Customization allows slewing rings to be manufactured using different materials and surface coatings to enhance their performance in specific industries or operating conditions. Materials such as stainless steel, heat-treated steels, or corrosion-resistant alloys can be chosen based on factors like temperature, corrosion resistance, or weight considerations.
  • Specialized Features: Depending on the industry or application, slewing rings can be customized with specialized features. This may include integrated sensors for position feedback, temperature sensors, or additional functionalities like locking mechanisms, lubrication systems, or anti-corrosion treatments.

The ability to customize slewing rings for specific industries or machinery configurations ensures that the resulting solution is optimized for performance, reliability, and longevity in the intended application. Customization allows for a precise match between the slewing ring and the machinery, considering factors such as space constraints, load requirements, environmental conditions, and integration needs.

It is important to work closely with slewing ring manufacturers or suppliers who have expertise in customization and can provide engineering support to develop the most suitable solution for the specific industry or machinery configuration. By leveraging customization options, industries can benefit from slewing rings that are specifically designed to meet their unique requirements and optimize the performance of their machinery or equipment.

Can you explain the primary functions and roles of slewing rings in various applications?

Slewing rings play crucial functions and serve different roles in various applications across industries. These specialized bearings enable controlled rotational movement and support heavy loads. Here’s a detailed explanation of the primary functions and roles of slewing rings in different applications:

  • Construction and Cranes: In construction machinery and cranes, slewing rings are used to support the boom or jib, enabling 360-degree rotation. They provide a stable and low-friction interface that allows for efficient material handling and precise positioning of heavy loads. Slewing rings in these applications must withstand high axial, radial, and moment loads.
  • Wind Turbines: Slewing rings play a critical role in wind turbine systems. They support the rotor and allow it to rotate according to wind direction, facilitating efficient power generation. Slewing rings in wind turbines must handle significant loads while ensuring smooth rotation and precise alignment between the rotor and the nacelle.
  • Industrial Equipment: Slewing rings find applications in various industrial equipment, including indexing tables, turntables, robotic arms, and packaging machinery. In these applications, slewing rings enable controlled and precise rotation, allowing for accurate positioning, indexing, and automation. They contribute to the overall efficiency and functionality of industrial machinery.
  • Transportation and Automotive: Slewing rings are utilized in transportation and automotive applications, such as vehicle cranes, aerial platforms, and rotating platforms for heavy-duty vehicles. They provide a stable and reliable connection that enables safe and controlled rotation. In these applications, slewing rings must withstand dynamic loads and harsh operating conditions while ensuring the safety and stability of the equipment.
  • Medical and Rehabilitation Equipment: Slewing rings are important components in medical and rehabilitation equipment, including patient lifts and adjustable beds. They enable smooth and controlled movement, allowing for easy and safe patient transfers and positioning. Slewing rings in these applications must provide precise and quiet operation, ensuring patient comfort and care.
  • Aerospace and Defense: Slewing rings are utilized in aerospace and defense applications, such as radar systems, missile launchers, and satellite antennas. They enable precise and controlled movement in critical systems, contributing to accurate tracking, targeting, and communication. Slewing rings in aerospace and defense applications must meet stringent requirements for reliability, precision, and durability.
  • Marine and Offshore: Slewing rings are employed in marine and offshore equipment, including cranes, davits, and rotating platforms on ships and offshore rigs. They enable heavy lifting and controlled rotation in challenging marine environments. Slewing rings in marine applications must be corrosion-resistant and capable of withstanding harsh weather conditions and high loads.

Overall, slewing rings serve as essential components in a wide range of applications, enabling controlled rotation, supporting heavy loads, and ensuring precise positioning. Their versatility and ability to withstand varying loads and operating conditions make them invaluable in industries such as construction, wind energy, industrial automation, transportation, healthcare, aerospace, and marine sectors.

How does the choice of slewing rings affect the overall performance and reliability of rotating systems?

The choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. The selection of the appropriate slewing ring involves considering various factors such as load capacity, operating conditions, precision requirements, and application-specific needs. Here’s a detailed explanation of how the choice of slewing rings affects the overall performance and reliability of rotating systems:

  • Load Capacity: The load capacity of the slewing ring is a critical factor in determining the performance and reliability of the rotating system. Choosing a slewing ring with an adequate load capacity ensures that the system can handle the expected loads without excessive stress or deformation. If the selected slewing ring has insufficient load capacity for the application, it can lead to premature failure, increased wear, and compromised reliability.
  • Operating Conditions: The operating conditions, including factors such as temperature, humidity, dust, and exposure to corrosive substances, influence the choice of slewing rings. It is essential to select a slewing ring that is designed to withstand the specific environmental conditions of the application. Failure to consider the operating conditions can result in accelerated wear, corrosion, reduced performance, and decreased reliability of the rotating system.
  • Precision Requirements: Some applications require high precision and accuracy in the movement and positioning of the rotating system. The choice of slewing ring with appropriate precision is crucial to meet these requirements. Slewing rings designed for precision applications incorporate features such as high-precision raceways, gear teeth, or preloading mechanisms. Selecting a slewing ring with inadequate precision can lead to inaccuracies, positioning errors, and compromised performance of the rotating system.
  • Material Selection: The choice of materials for the slewing ring affects its durability, resistance to wear, and overall reliability. Different materials, such as carbon steel, stainless steel, or specialized alloys, have varying properties and performance characteristics. The selection of the appropriate material depends on factors such as load requirements, operating conditions, and the presence of corrosive or abrasive elements. Choosing the wrong material can result in premature wear, reduced lifespan, and compromised reliability of the rotating system.
  • Sealing and Lubrication: Slewing rings require proper sealing and lubrication to ensure smooth operation and prevent contamination or inadequate lubrication. The choice of slewing rings with effective sealing mechanisms and suitable lubrication requirements is crucial for maintaining performance and reliability. Inadequate sealing or improper lubrication can lead to increased friction, accelerated wear, and decreased reliability of the rotating system.
  • Manufacturer and Quality: The choice of a reputable manufacturer and high-quality slewing rings is essential for ensuring reliability and performance. Reliable manufacturers adhere to stringent quality control processes, use advanced manufacturing techniques, and provide comprehensive technical support. Choosing slewing rings from trusted manufacturers reduces the risk of premature failures, ensures consistent performance, and enhances the overall reliability of the rotating system.

In summary, the choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. Considering factors such as load capacity, operating conditions, precision requirements, material selection, sealing and lubrication, and the reputation of the manufacturer helps in selecting the appropriate slewing rings. By making the right choice, the rotating system can operate efficiently, withstand expected loads, maintain precision, and provide reliable performance throughout its lifespan.

China Good quality Stainless Steel Ball Bearings with Ceramic Ball Ss608zz Cer Radial Spherical Plain Bearing Slewing Bearing Spare Parts 1688  China Good quality Stainless Steel Ball Bearings with Ceramic Ball Ss608zz Cer Radial Spherical Plain Bearing Slewing Bearing Spare Parts 1688
editor by Dream 2024-05-07

China Hot selling Wind Power 4140 4142 Slewing Bearing Alloy Steel Ring

Product Description

Steel Grade 4140,4130,A1050,F11,5140,304L,316L,321,P11,F22,4340
1.2344, 17CrNiMo6, 20MnMo, S355NL
18CrNiMo7-6
42CrMo, 40CrNiMo

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Gravity Casting
Application: Agricultural Machinery Parts
Material: Steel
Heat Treatment: Tempering
Customization:
Available

|

Can you describe the factors to consider when selecting slewing rings for specific applications?

When selecting slewing rings for specific applications, several factors need to be considered to ensure optimal performance and reliability. Here’s a detailed description of the factors to consider:

  • Load Requirements: The load capacity of the slewing ring should match the anticipated loads in the application. Consider both the maximum static load (weight of the structure or equipment) and dynamic load (forces during operation). It is crucial to analyze the load distribution, including axial, radial, and moment loads, and select a slewing ring with sufficient load-carrying capacity to handle these loads.
  • Space Limitations: Evaluate the available space for the installation of the slewing ring. Consider the diameter, height, and width of the slewing ring to ensure it fits within the space constraints of the application. It is essential to consider both the external dimensions of the slewing ring and the required clearance for rotation.
  • Rotational Speed: Determine the required rotational speed of the slewing ring. Consider the application’s operating speed and any specific speed limitations. The slewing ring should be selected to accommodate the rotational speed requirements while maintaining smooth and efficient operation.
  • Environmental Conditions: Evaluate the operating environment of the application. Factors such as temperature, humidity, dust, water exposure, chemicals, and corrosive elements should be considered. Choose a slewing ring with appropriate sealing systems, corrosion-resistant materials, and lubrication options to withstand the specific environmental conditions.
  • Accuracy and Positioning: Some applications require precise positioning and rotational accuracy. Determine the required level of accuracy and select a slewing ring that provides the necessary precision. Factors such as gear mechanism, backlash control, and manufacturing tolerances contribute to the accuracy of the slewing ring.
  • Operating Conditions: Consider the overall operating conditions of the application, including factors such as shock and vibration levels, duty cycle, continuous or intermittent operation, and expected service life. The slewing ring should be designed to withstand the anticipated operating conditions and provide reliable performance over the desired lifespan.
  • Integration and Compatibility: Assess the integration requirements of the slewing ring with the rest of the system or equipment. Consider factors such as mounting interfaces, connection points, gear compatibility, and the need for additional components such as drive systems or bearings. Ensure that the selected slewing ring is compatible with the existing or planned system components.
  • Industry Standards and Regulations: Depending on the application, specific industry standards and regulations may apply. Consider any applicable standards, such as ISO specifications or industry-specific guidelines, to ensure compliance and safety in the selection of the slewing ring.

By carefully analyzing these factors and selecting a slewing ring that meets the specific requirements of the application, one can ensure optimal performance, longevity, and reliability of the slewing ring in its intended use.

How does the design of a slewing ring contribute to efficient rotation and movement?

The design of a slewing ring plays a crucial role in facilitating efficient rotation and movement in mechanical systems. Several design features contribute to its functionality and performance. Here’s a detailed explanation of how the design of a slewing ring contributes to efficient rotation and movement:

  • Structure and Load Distribution: Slewing rings are designed with a large diameter compared to their thickness. This structural design ensures optimal load distribution across the bearing, allowing it to support axial, radial, and moment loads efficiently. The arrangement of rolling elements within the raceways helps distribute the load evenly, reducing stress concentrations and minimizing friction during rotation.
  • Low Friction and Smooth Rotation: The rolling elements, which can be balls or rollers, are precisely positioned within the raceways of the inner and outer rings. The design ensures that the rolling elements make contact with the raceways at specific angles, reducing friction and enabling smooth rotation. This low-friction design minimizes power loss, enhances energy efficiency, and contributes to the overall efficiency of the system.
  • Gear Mechanism: In some slewing ring designs, a gear mechanism is integrated into the bearing. This allows the slewing ring to act as a rotational drive system, enabling controlled and precise movement. The gear teeth engage with external gears or pinions, providing a means to transmit torque and facilitating rotational motion. The gear mechanism in a slewing ring design contributes to efficient and synchronized rotation in applications where precise positioning or continuous rotation is required.
  • Sealing and Lubrication: Slewing rings are designed with sealing systems to protect the internal components from contaminants and prevent lubricant leakage. The sealing systems help maintain the integrity of the bearing by keeping out dirt, dust, water, and other particles that could cause damage or premature wear. Proper lubrication is also crucial for efficient rotation and movement. The design of slewing rings often includes lubrication channels or grease fittings to ensure adequate lubricant supply to the rolling elements and raceways, reducing friction and promoting smooth operation.
  • Materials and Durability: Slewing rings are typically made of high-quality materials such as alloy steels or specialty steels that offer excellent strength, durability, and corrosion resistance. The choice of materials and the design of the slewing ring take into account the specific application requirements, including factors such as load capacity, operating temperature, and environmental conditions. The design ensures that the slewing ring can withstand the anticipated loads, operating conditions, and service life requirements.

Overall, the design of a slewing ring is carefully engineered to maximize load-bearing capacity, minimize friction, enable smooth rotation, and ensure durability. By incorporating features such as optimized load distribution, low-friction rolling elements, gear mechanisms, sealing systems, and appropriate materials, slewing rings contribute to efficient rotation and movement in mechanical systems, enhancing the overall performance and reliability of the equipment.

How does the choice of slewing rings affect the overall performance and reliability of rotating systems?

The choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. The selection of the appropriate slewing ring involves considering various factors such as load capacity, operating conditions, precision requirements, and application-specific needs. Here’s a detailed explanation of how the choice of slewing rings affects the overall performance and reliability of rotating systems:

  • Load Capacity: The load capacity of the slewing ring is a critical factor in determining the performance and reliability of the rotating system. Choosing a slewing ring with an adequate load capacity ensures that the system can handle the expected loads without excessive stress or deformation. If the selected slewing ring has insufficient load capacity for the application, it can lead to premature failure, increased wear, and compromised reliability.
  • Operating Conditions: The operating conditions, including factors such as temperature, humidity, dust, and exposure to corrosive substances, influence the choice of slewing rings. It is essential to select a slewing ring that is designed to withstand the specific environmental conditions of the application. Failure to consider the operating conditions can result in accelerated wear, corrosion, reduced performance, and decreased reliability of the rotating system.
  • Precision Requirements: Some applications require high precision and accuracy in the movement and positioning of the rotating system. The choice of slewing ring with appropriate precision is crucial to meet these requirements. Slewing rings designed for precision applications incorporate features such as high-precision raceways, gear teeth, or preloading mechanisms. Selecting a slewing ring with inadequate precision can lead to inaccuracies, positioning errors, and compromised performance of the rotating system.
  • Material Selection: The choice of materials for the slewing ring affects its durability, resistance to wear, and overall reliability. Different materials, such as carbon steel, stainless steel, or specialized alloys, have varying properties and performance characteristics. The selection of the appropriate material depends on factors such as load requirements, operating conditions, and the presence of corrosive or abrasive elements. Choosing the wrong material can result in premature wear, reduced lifespan, and compromised reliability of the rotating system.
  • Sealing and Lubrication: Slewing rings require proper sealing and lubrication to ensure smooth operation and prevent contamination or inadequate lubrication. The choice of slewing rings with effective sealing mechanisms and suitable lubrication requirements is crucial for maintaining performance and reliability. Inadequate sealing or improper lubrication can lead to increased friction, accelerated wear, and decreased reliability of the rotating system.
  • Manufacturer and Quality: The choice of a reputable manufacturer and high-quality slewing rings is essential for ensuring reliability and performance. Reliable manufacturers adhere to stringent quality control processes, use advanced manufacturing techniques, and provide comprehensive technical support. Choosing slewing rings from trusted manufacturers reduces the risk of premature failures, ensures consistent performance, and enhances the overall reliability of the rotating system.

In summary, the choice of slewing rings has a significant impact on the overall performance and reliability of rotating systems. Considering factors such as load capacity, operating conditions, precision requirements, material selection, sealing and lubrication, and the reputation of the manufacturer helps in selecting the appropriate slewing rings. By making the right choice, the rotating system can operate efficiently, withstand expected loads, maintain precision, and provide reliable performance throughout its lifespan.

China Hot selling Wind Power 4140 4142 Slewing Bearing Alloy Steel Ring  China Hot selling Wind Power 4140 4142 Slewing Bearing Alloy Steel Ring
editor by Dream 2024-05-03

China high quality China Supplier Worm Drive Excavator Swing Circle Slewing Bearing Inner Outer Gear Stainless Steel Trailer Plastic Bearing Ring Manufacturer Industrial bearing block

Product Description

China Supplier Worm Drive Excavator Swing Circle Slewing bearing inner outer gear stainless steel Trailer plastic Bearing Manufacturer Industrial

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Certification: CE, RoHS, GS, ISO9001
Standard: DIN, ASTM, GOST, GB, JIS, ANSI, BS
Customized: Customized
Material: Metal
Application: Metal Recycling Machine, Metal Cutting Machine, Metal Straightening Machinery, Metal Spinning Machinery, Metal Processing Machinery Parts, Metal forging Machinery, Metal Engraving Machinery, Metal Drawing Machinery, Metal Coating Machinery, Metal Casting Machinery
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bushing

What you should know about bushings

If you are in the market for a casing, there are a few things you should know before buying. First, a bushing is a mechanical part with a rotating or sliding shaft part. You can find them in almost all industrial applications due to their excellent load-carrying capacity and anti-friction properties. They are especially important in construction, mining, agriculture, hydropower, material handling, and more.

Casing application

The casing market is mainly driven by the growth of the power generation industry. The increasing electrification of Asia Pacific and the deployment of renewable energy in countries such as Saudi Arabia and the UAE are driving the demand for distribution transformer bushings. In addition, the demand for bushings in Western Europe is also likely to increase with the spread of renewable energy and the installation of electric vehicle charging infrastructure. However, the market in Asia Pacific is expected to remain small compared to the rest of the world.
Although bushings are relatively expensive, they are very durable and cost-effective. Furthermore, bushings have a variety of applications, making them an important component in power transformers. For example, power transformers often use bushings to achieve relative movement by sliding or rolling. The vehicle suspension system also uses rubber bushings for a smooth ride and rotating bushings for machine-related operations. They require precision machined parts and are especially useful in applications where high loads and friction must be controlled. Also, plastic bushings are used for wheels in dry kilns, where lubrication is often troublesome.
Transformers require constant monitoring, which is one of the reasons bushings are so important in power transformers. Any failure of these components could result in the total loss of the transformer and all surrounding equipment. To maintain high system reliability, utilities must monitor insulation in and around bushings, especially if transformers have been in use for decades. Some utilities have made monitoring the condition of their transformers an important part of their smart grid plans.

Material

The core of the dry casing has many material interfaces. The discharge most likely originates near the edges of the foils and can cause electrical tree growth or breakdown between adjacent foils. Several studies have investigated interfacial effects in composite insulating materials and concluded that the conditions under which the interface occurs is a key factor in determining the growth of electrical trees. This study found that material type and interface conditions are the two most important factors for the growth of electrical trees.
Bushings can be made of many different materials, depending on their purpose. The main purpose of the bushing is to support the assembly while protecting it. They must be stiff enough to support the load placed on them, and flexible enough to protect the shaft. Since the shaft is usually not centered on the bushing during rotation, the bushing must be durable enough to carry the load while still protecting the shaft. Here are several materials used for bushings:
A stabilizer bar assembly is a good example of pre-assembly. This pre-assembly enables the vehicle assembly plant to receive components ready for vehicle assembly. The prior art requires the vehicle assembly plant to separate the bushing from the stabilizer bar. However, the present invention eliminates this step and provides a mechanically rigid stabilizer bar assembly. It is designed to prevent audible squeals and improve vehicle performance and handling.
Hardened steel bushings are ideal for pivot and low speed applications. They are made of high carbon steel and fully hardened to 56-62 HRC. Bronze bushings require daily or weekly lubrication but are more expensive than plastic bushings. Plastic bushings are low cost, low maintenance, self lubricating and do not require regular lubrication. These are also suitable for applications with hard to reach parts.
bushing

application

Bushings have many applications in various industries. Most of the time, it is used for drilling. Its excellent chemical and mechanical properties can be used to protect various equipment. These components are versatile and available in a variety of materials. All sleeves are packaged according to national and international standards. They are used in many industrial processes from construction to drilling. Some application examples are listed below.The component 10 may contain a tank for a liquid such as fuel, and the object 12 may be made of fiber reinforced composite material. Sleeve assembly 16 is configured to ground component 10 and object 12 . It may be a bulkhead isolator 40 used to isolate electrical charges in aircraft hydraulic lines. Bushing assembly 16 is one of many possible uses for the bushing assembly. The following examples illustrate various applications of bushing assemblies.
Bearings are devices used to reduce friction between moving surfaces. They are a good choice for many applications as they are maintenance free and extend the life of machine components. They can be used in a variety of applications and are often used with plastic and metal materials. For example, Daikin offers bronze and brass bushings. Bushings have many other uses, but they are most commonly used in machines, especially when used in low-load environments.
The most common application for bushings is drilling. Swivel bushings can be used in almost any drilling application. For more complex applications, CZPT’s engineering department can create special designs to your specifications. The applications of bushings in machining centers are endless. By providing a smooth, reliable interface, bushings are an excellent choice for precision machining. They can also provide current paths.

Cost

When you have a vehicle that needs a bushing replacement, you may be wondering about the cost of a bushing replacement. The fact is, the cost of a bushing replacement will vary widely, depending on the specific car model. Some cars cost as little as $5, while other vehicles can cost up to $300. The replacement of a control arm bushing may not cost that much, but it’s important to know that it’s a relatively expensive part to replace.
Most mechanics charge around $375 for a job that involves replacing the bushing in a control arm. However, this price range can vary significantly, depending on whether the mechanic uses OE or aftermarket parts. In any case, the cost of labor is typically included in the price. Some mechanics may even include a labor charge, which is an additional cost. In general, however, the cost of a control arm bushing replacement is comparable to the cost of replacing a single bushing.
Control arm bushings are made of two metal cylinders secured together by a thick layer of rubber. Over time, these parts can deteriorate due to accidents, potholes, and off-roading. For this reason, it is important to replace them as soon as possible. Bushing replacement can save you money in the long run, and it’s important to have your vehicle repaired as soon as possible. If your control arm bushing is showing signs of wear, you should have it replaced before it becomes completely useless.
If you have decided to replace your suspension bushing yourself, the cost will be considerably lower than you would spend on the replacement of other components. If you have a mechanically-inclined mechanic, you can do it yourself. The parts and labour are reasonably cheap, but the most expensive part is the labor. Because it requires disassembling the wheel and suspension and installing a new bushing, it is important to have a mechanic who has a good understanding of vehicle mechanicry. The cost for control arm bushing replacement is between $20 and $80 per bushing, and a set of four costs approximately $300.
bushing

Disambiguation

If you’ve come across a page containing information about Bushing, you may have been looking for more information. This disambiguation page lists publications about the person, but these have not been assigned to him. We encourage you to contact us if you know who the true author of these publications is. Nevertheless, if you’re searching for specific information about Bushing, we recommend you start with CZPT.

China high quality China Supplier Worm Drive Excavator Swing Circle Slewing Bearing Inner Outer Gear Stainless Steel Trailer Plastic Bearing Ring Manufacturer Industrial   bearing blockChina high quality China Supplier Worm Drive Excavator Swing Circle Slewing Bearing Inner Outer Gear Stainless Steel Trailer Plastic Bearing Ring Manufacturer Industrial   bearing block
editor by Dream 2024-04-25

China Best Sales G20 Chrome /Stainless/Carbon Steel Ball 7/32′′ 15/64′′ for Pillow Block/Needle/Slewing Bearing with Good quality

Product Description

Product Description

 

Chemical composition

Our Advantages

Production Process

Company Profile

Xihu (West Lake) Dis. Qisheng Industry and Trade Co.Ltd was founded in 1994,have more than 20 years experience in producting carbon steel ball,chrome steelbal and stainless steel ball.

The annual production capacity is about 7,000 ton and most of them are exported to Japan,Canada,South-Africa,Chile etc more than 10 countries and areas in the world.

 

Our company can product and supply all kinds of steel ball.Material can be carbon steel,chrome steel and stainless steel,The diameter is 0.2mm-25.4mm,grade is G10-G1000,and the hardness is hrc58-62.

Our steel ball mainly used for automobiles, motorcycle,bicycle,precision bearing,precision machinery and wheels,trundles etc.Meanwhile, special product can be customized according to clients request.

 

For any inquiry,questions or request for technical support,please do not hesitate to contact us.

Looking forward to service and cooperate with you.

 

Application

Packaging & Shipping

 

FAQ

Q1: Are you a factory or a Trade Company?
A: We are factory and have Hi-Tech and capable production line. 

Q2: What’s your advantage? Why we choose you?
A: we have more than 20 years balls manufacture experience, have large stock and wide size range.

Q3:Could you supply samples? Is it free or extra? 
A:Yes, We can provide free samples and you just need to payment freight costs.

Q4:Where do you export?
A: Our products are exported to over 40 countries and regions including USA, Korea, Japan, Malaysia, Australia, Canada and South Africa, and so on.

Q5:Could you tell me the delivery time of your goods?
A:5-10 days stock goods and other goods according to the quantity of about 15-20days.

Q6:What’s the packaging?
A:There are Plastic boxes,Carton, Steel Drum or as Customer′s Demand.

Q7:What’s your payment way?
A:We accept the TT,Payment=1000USD, 30% T/T in advance,balance payment before shippment. 
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Customized: Customized
Certification: ISO
Standard Parts: Yes
Universal: Yes
Type: Bearing Ball
Material: Carbon Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bushing

Advantages and disadvantages of different types of bushings

Bushings are a simple but essential part of machinery with sliding or rotating shaft assemblies. This type of bearing is used in a wide variety of industries because its high load-carrying capacity and excellent anti-friction properties make it a necessity for construction, mining, hydropower, transportation and agricultural machinery. In addition to these applications, bushings also play a vital role in material handling and food processing. This article explores the various types of bushings available.

air casing

The air bushing forms a frictionless cylinder that applies the load to the rotating object. Bushings are used to measure torque and provide self-centering force in applications where linear motion is critical. The following are load equations that can be used to select the appropriate air sleeve for your application. To learn more about these air sleeves, read on. This article discusses the benefits and uses of air bushings in linear motion.
Bushings have many advantages over bearings. They are not prone to wear and corrosion. Unlike bearings, they can easily bypass conversion and inspection periods. Their high-quality design guarantees reliable machine performance, yet they are inexpensive and easy to replace. In many industries, air compressors are essential for sports. The air bushing eliminates friction, allowing the compressor to work more efficiently. They can also help eliminate the need for frictionless bearings and improve the overall efficiency of the machine.
Another type of air bearing is the cylindrical bushing. These are used for linear and aerostatic motion. Their low friction properties allow them to support radial loads without wearing out or damaging components. They are usually used for normal sized shafts. Air bushings have several components that can be used with other types of air bearings. Cylindrical air bearings have four o-ring grooves that allow them to be inserted into the structure. They are often used with other types of air bearings for smoother motion.

rubber bushing

If you’re looking to buy a new suspension system, you may be wondering if rubber or polyurethane is the right choice. Rubber is less expensive, but not without its drawbacks. Polyurethane is more durable and offers better handling and suspension. Rubber bushings also reduce road feel, while polyurethane isolates the driver from the road. Both materials will help you improve handling and alignment, but each has advantages and disadvantages.
Typically, rubber bushings are cylindrical components with metal inner and outer surfaces. These metals can be stainless steel, mild steel or aluminum. They are usually stress relieved and prestressed for maximum durability. They are designed to meet the exact specifications of a specific application. For example, shock-absorbing rubber bushings are cushioning pads made of polyurethane that absorb road bumps and noise.
Unlike polyurethane, rubber suspension bushings have a shorter lifespan than polyurethane. This is because rubber is more susceptible to damage from UV rays, road chemicals and oils. The rubber also stretches and warps due to the pressure of the road. The rubber bushing also squeaks, which can be cause for concern. But if the noise persists for a long time, it may be a sign that your vehicle needs a new suspension system.
The main reason why cars use rubber bushings is for shock absorption. During machine use, vibration and noise caused by the movement of parts can cause serious damage. To prevent this, rubber bushings act as shock absorbers and damping agents. Rubber bushings are an excellent choice for automakers, but they are also used in a variety of industrial settings.
bushing

Polyurethane bushing

If you want to make your vehicle handle better, polyurethane bushings may be the answer. They come in different shapes and sizes and can improve a wide range of areas. This article will explore the advantages and disadvantages of polyurethane bushings and their potential place in your car. However, before you decide to upgrade your suspension, you should understand the various advantages and disadvantages of polyurethane bushings.
The main difference between a polyurethane bushing and a rubber bushing is how the bushing rides on the suspension arm. Polyurethane bushings do not have faces that slide against each other like rubber bushings. This means they allow for more rotation and flexion, as well as consistent alignment of the control arms. Polyurethane bushings require lubrication, but only need to be lubricated every five years, much longer than equivalent rubber bushings.
Another difference between polyurethane and rubber bushings is hardness. The former has the least elasticity and is generally the most suitable for street use. While rubber bushings provide the best NVH quality, they are also notorious for changing suspension geometry. Rubber is known to be an excellent choice for street use, but polyurethane has a lifespan that far outlasts rubber.

bronze bushing

There are two main types of bronze bushings, sintered and cast. The latter require additional lubrication and are typically used in applications where powder metal products cannot be secured. The former is cheaper than the latter, but the process is more expensive. Bronze bushings can be used in environments where the material will be exposed to high temperature and vibration. For these reasons, the production process is relatively slow and expensive.
The strength of bronze is the main reason why they are so popular. Brass is a softer metal that deforms and corrodes easily. The bronze casing can withstand continuous immersion in water and can last for hundreds of years with little or no maintenance. However, it is important to note that this metal is not resistant to aggressive chemicals and requires regular maintenance to keep it in good condition.
Bronze bushings offer many advantages, including durability and aesthetics. Bronze bushings are available in a variety of sizes and can be ordered in imperial and metric sizes. They can be built to your specifications and are very durable. You can even custom order them if you want. And because they can be customized, they are an excellent choice for high-end applications. The quality of the bronze bushings is second to none.

Plastic bushing

Engineered composite plastic bushings have been shown to last longer than bronze bushings and have also been found to reduce maintenance costs by up to 40%. Plastic bushings have become the first choice for thousands of applications, including medical equipment, food processing machinery, pumps, and more. Bronze bushings are oil-impregnated, but their performance is limited by their inherent weaknesses: oil-impregnated bronze tends to develop high levels of capillary action and requires rotational motion to maintain an intact oil film. Low speed and intermittent use of bronze bushings can also hinder the ability of the lubricant to provide adequate lubrication.
Advantages of plastic bushings over metal include low friction, non-reactive surfaces, and long life. CZPT offers a variety of engineering plastics that outperform traditional metals in a range of applications. For example, nylon bushings resist wear while requiring little lubrication. In addition, polymer-shaped plastics are lightweight and highly resistant to aggressive cleaning agents and chemicals.
Besides being less expensive than metal bushings, plastic bushings offer many other advantages. They are very durable, have a low coefficient of friction, and are more wear-resistant than metal. Unlike metal, plastic bushings do not require lubrication and do not absorb dust and oil like metal bushings. They are lightweight, easy to maintain and last longer. This makes them an excellent choice for many applications.
bushing

Sleeve bearing

Sleeve bearings are simple pipes with matching components. They facilitate linear motion by absorbing friction and vibration. They can withstand heavy loads and work at high temperatures for long periods of time. Flange bearings are similar to sleeve bearings, but are enclosed and rotated in a housing unit. Sleeve bearings have higher load-carrying capacity and resistance to shock loads. Furthermore, they are lightweight and low cost.
Another name for sleeve bearings is babbitt radial bearings. These bearings are usually made of bronze and have straight inner and outer diameters. They are also impregnated with oil and can withstand radial loads. Typical uses for sleeve bearings are agriculture, automotive and machine tools. Sleeves can also be solid or cored material, depending on the intended use.
The type of sleeve bearing used in the bushing is important in determining which type of bushing to buy. Sleeve bearings are sized based on pressure and speed considerations. Typically, the PV limit is an upper bound on the combined pressure and velocity for a given casing material. In some cases, the sleeve bearing used in the bushing is the same as the plain bearing.
Sleeve bearings are simple in design and made from a variety of materials, including bronze and plastic. They are more affordable than metal, but plastic is still not inaudible. Plastic sleeve bearings will rattle like metal bearings if the gap between the two bushings is not accurate. Additionally, high temperature electronic painting can permanently thin the casing. The stainless steel backing provides a good surface for electronic painting and enhances abrasion resistance.

China Best Sales G20 Chrome /Stainless/Carbon Steel Ball 7/32′′ 15/64′′ for Pillow Block/Needle/Slewing Bearing   with Good qualityChina Best Sales G20 Chrome /Stainless/Carbon Steel Ball 7/32′′ 15/64′′ for Pillow Block/Needle/Slewing Bearing   with Good quality
editor by Dream 2024-04-22

China Custom G20 Chrome /Stainless/Carbon Steel Ball 7/32′′ 15/64′′ for Pillow Block/Needle/Slewing Bearing with Best Sales

Product Description

Product Description

 

Chemical composition

Our Advantages

Production Process

Company Profile

Xihu (West Lake) Dis. Qisheng Industry and Trade Co.Ltd was founded in 1994,have more than 20 years experience in producting carbon steel ball,chrome steelbal and stainless steel ball.

The annual production capacity is about 7,000 ton and most of them are exported to Japan,Canada,South-Africa,Chile etc more than 10 countries and areas in the world.

 

Our company can product and supply all kinds of steel ball.Material can be carbon steel,chrome steel and stainless steel,The diameter is 0.2mm-25.4mm,grade is G10-G1000,and the hardness is hrc58-62.

Our steel ball mainly used for automobiles, motorcycle,bicycle,precision bearing,precision machinery and wheels,trundles etc.Meanwhile, special product can be customized according to clients request.

 

For any inquiry,questions or request for technical support,please do not hesitate to contact us.

Looking forward to service and cooperate with you.

 

Application

Packaging & Shipping

 

FAQ

Q1: Are you a factory or a Trade Company?
A: We are factory and have Hi-Tech and capable production line. 

Q2: What’s your advantage? Why we choose you?
A: we have more than 20 years balls manufacture experience, have large stock and wide size range.

Q3:Could you supply samples? Is it free or extra? 
A:Yes, We can provide free samples and you just need to payment freight costs.

Q4:Where do you export?
A: Our products are exported to over 40 countries and regions including USA, Korea, Japan, Malaysia, Australia, Canada and South Africa, and so on.

Q5:Could you tell me the delivery time of your goods?
A:5-10 days stock goods and other goods according to the quantity of about 15-20days.

Q6:What’s the packaging?
A:There are Plastic boxes,Carton, Steel Drum or as Customer′s Demand.

Q7:What’s your payment way?
A:We accept the TT,Payment=1000USD, 30% T/T in advance,balance payment before shippment. 
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Customized: Customized
Certification: ISO
Standard Parts: Yes
Universal: Yes
Type: Bearing Ball
Material: Carbon Steel
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

bushing

Bushing Application, Type and Compression Capability

Bushings are cylindrical bushings used in machinery. It prevents wear of moving parts and is often used as an enclosure. Bushings are also known as plain bearings or sleeve bearings. You may be wondering what these parts do and how they work, but this article aims to answer all your questions. We’ll cover bushing applications, types and compression capabilities so you can choose the right one for your needs.

application

A bushing is a mechanical component that plays an important role in many different fields. In addition to being very practical, it helps reduce noise, vibration, wear and provides anti-corrosion properties. These properties help mechanical equipment in various ways, including making it easier to maintain and reducing its overall structure. The functionality of an enclosure depends on its purpose and environment. This article will discuss some of the most common applications of casing.
For example, in an aircraft, the bushing assembly 16 may be used for the bulkhead isolator 40 . The bushing assembly 16 provides the interfaces and paths required for current flow. In this manner, the sleeve assembly provides a secure, reliable connection between two objects with different electrical charges. They also prevent sparking by increasing the electrical conductivity of the component and reducing its resistivity, thereby minimizing the chance of spark formation.
Another common application for bushings is as a support shaft. Unlike bearings, bushings operate by sliding between two moving surfaces. As a result, they reduce friction and handling stress, reducing overall maintenance costs. Typically, the bushing is made of brass or bronze. The benefits of bushings are similar to those of bearings. They help extend the life of rotating machines by reducing frictional energy loss and wear.
In addition to identifying growth opportunities and minimizing risks, the Bushing Anti-Vibration Mounts Market report provides insights into the dynamics of the industry and its key players. The report covers global market size, applications, growth prospects, challenges and regional forecasts. The detailed section on Bushing Anti-Vibration Mounts industry provides insights on demand and supply along with competitive analysis at regional and country level.

type

There are several types of bushings. Among them, the SF6 insulating sleeve has the simplest structure and is based on composite hollow insulators. It also has several metal shielding cylinders for regulating the electric field within the enclosure and another for grounding the metal shield. In addition to being lightweight, this sleeve is also very durable, but the diameter of its shield electrode is very large, which means special installation and handling procedures are required.
Linear bushings are usually pressed into the bore of the shaft and provide support as the shaft moves in/out. Non-press-fit bushings are held in place by snap rings or pins. For certain applications, engineers often choose bushings over bearings and vice versa. That’s why. Below are some common bushing types. If you need to buy, make sure you know how to tell them apart.
OIP bushings are used for oil-filled cable boxes, and oil-to-oil bushings are used for EHV power transformers. The main components of the OIP enclosure are shown in Figure 7a. If you are considering this type of bushing for your specific application, you need to make sure you understand your specific requirements. You can also consult your local engineering department for more information.
All types of bushings should be tested for IR and capacitance. The test tap should be securely attached to the bushing flange. If damaged bushings are found, replace them immediately. Be sure to keep complete records of the enclosure for routine maintenance and any IR testing. Also, be sure to pay attention to tan d and thermal vision measurements.
bushing

Compressive ability

There are several things to consider when choosing an enclosure. First, the material. There are two main types of bushings: those made of filled Teflon and those made of polyester resin. The former has the highest compressive strength, while the latter has a lower compressive capacity. If you need small amounts, glass-filled nylon bushings are the most common and best option. Glass-filled nylon is an economical material with a compressive strength of 36,000 lbs.
Second, the material used for the enclosure must be able to withstand the load. For example, bronze bushings can cause metal shavings to fall into the papermaking process. CG materials can withstand very high levels of moisture, which can damage bushings that require lubrication. Additionally, these materials can operate for extended periods of time without lubrication. This is particularly advantageous in the paper industry, since the casing operates in a humid environment.
In addition to the material and its composition, other characteristics of the enclosure must also be considered, including its operating temperature. Although frictional heat from moving loads and the temperature of the bushing itself can affect the performance of the bushing, these factors determine its service life. For high temperature applications, the PV of the enclosure should be kept low. On the other hand, plastic bushings are generally less heat resistant than metal bushings. In addition, plastic sleeves have a high rate of thermal expansion. To avoid this, size control is also important.
Low pressure bushings have different requirements. An 800 MVA installation requires a low voltage bushing rated at 14 000 A. The palm assembly of the transformer also features a large central copper cylinder for electrical current. The bushing must withstand this amount of current and must maintain an even distribution of current in the transformer tank. If there is a leak, the bushing must be able to resist the leak so as not to damage the transformer.

cost

The cost of new control arm bushings varies widely. Some parts are cheaper than others, and a new part is only $200. However, if you replace the four control bushings in your car, the cost can exceed $1,200. The cost breakdown for each section is listed below. If you plan to replace all four, the cost of each bushing may range from $200 to $500.
The control arm bushing bears the brunt of the forces generated by the tire and is parallel to the direction of the force. However, over time, these components wear out and need to be replaced. Replacing one control arm bushing costs between $300 and $1,200. However, the cost of replacing each arm bushing depends on your car model and driving habits. The control arm bushings should last about 100,000 miles before needing replacement.
The repair process for control arm bushings is time consuming and expensive. Also, they may need to remove the heat shield or bracket. In either case, the procedure is simple. Stabilizer bar brackets are usually attached with one or two mounting bolts. They can also be secured with nuts or threaded holes. All you need is a wrench to remove them.
The control arm bushings are made of two metal cylinders and a thick rubber bushing. These parts can deteriorate from potholes, off-roading or accidents. Because they are made of rubber, the parts are more expensive than new. Buying used ones can save you money because you don’t need to install them yourself. However, if you do plan on fixing a luxury car yourself, be sure to find one that has a warranty and warranty.
bushing

maintain

To prevent your vehicle from overheating and leaking oil, a properly functioning bushing must be used. If the oil level is too low, you will need to check the mounting bolts to make sure they are properly tightened. Check gasket to ensure proper compression is applied, replace bushing if necessary. You should notify your vehicle manufacturer if your vehicle is immersed in oil. Whenever an oil leak occurs, it is very important to replace the oil-filled bushing.
Another important aspect of bushing maintenance is the detection and correction of partial discharges. Partial discharge is caused by current entering the bushing. Partial discharge can cause tree-like structures, cracks and carbonization in the discharge channel, which can eventually damage the casing. Early detection of these processes is critical to ensuring that your vehicle’s bushings are properly maintained. Identifying and repairing partial discharges is critical to ensuring optimal operation, regardless of the type of pump or motor.
To diagnose casing condition, perform several tests. You can use tan d measurement, which is a powerful tool for detecting the ingress of water and moisture. You can also use power factor measurements to detect localized defects and aging effects. You can also check the oil level by performing an infrared check. After completing these tests, you will be able to determine if there is enough oil in the casing.
If the oil level in the transformer is too low, water and air may leak into the transformer. To avoid this problem, be sure to check the MOG and transformer oil levels. If the silicone is pink, replace it. You should also check the function of the oil pump, fan and control circuits annually. Check the physical condition of the pump and fan and whether they need to be replaced. Clean the transformer bushing with a soft cotton cloth and inspect for cracks.

China Custom G20 Chrome /Stainless/Carbon Steel Ball 7/32′′ 15/64′′ for Pillow Block/Needle/Slewing Bearing   with Best SalesChina Custom G20 Chrome /Stainless/Carbon Steel Ball 7/32′′ 15/64′′ for Pillow Block/Needle/Slewing Bearing   with Best Sales
editor by Dream 2024-04-22

China Professional Ring Forging Wind Power Ring 4140 4142 Slewing Bearing Alloy Steel Ring

Product Description

ZheJiang Xihu (West Lake) Dis. Huang Forging Company Ltd., is a medium-size company in the forging industry, and the major products are forgeable pieces and flanges.
With 20 years of manufacturing experience, our factory now covers an area of 16, 000 square meters, employing more than 200 staff, including 4 senior engineers, 6 engineers, 30 technicians and 12 inspection specialists. With advanced technology, world-class craftsmanship and a complete range of inspection methods, we can produce any products smaller than 5, 000 mm in diameter and lighter than 30, 000 kg in weight in 1 completion. Having signed long-tem purchasing contracts with major steel and iron factories in China such as Bao Steel, Tai Steel, Capital Steel and others, our company can guarantee the quality of raw materials, with a comprehensive operational chains of material soucing, forging, heat treatment, machine tooling, quality inspection, mechanical typing, and packaging. Our equipment and technologies are also constantly upgrading.
Name: Ring
Raw material: Carbon/stainless/alloy
Min size: Ø 75/Ø 15x12mm
Max size: Ø 5000/Ø 4500x300mm
Min weight: 0.30kg
Max weight: 9000kg
Heat treatment: Normalize/Quench/tempering
 

1. Basic Information: 
1) Forged steel flanges/carbon steel flanges/stainless steel flanges

2) Material: 4130, 4140, 4317, 4142, 4340, UNS440, 34CrNi3Mo,  25Cr2Ni4MOV, 18CrNiMo5, 30CrMo, 9Cr2Mo, 9Cr2W, 9Cr3Mo, 60CrMoV etc.

3)Dual certified to ASME/ASTM SA/A182 and EN15712-5 or DIN17440 

4)PED-AD 2000-Merkblatt W0

DHDZ is a major manufacturer of various forgings. Such as forged SHAFT,forged RING;forged BLOCK;forged FLANGE.
Pipe sheet,gear ring,slewing bearing ring…most of forging parts. 

 Name:   Flange
 Standard:  ASME; ANSI/DIN; BS; JIS; EN; …
 Raw material:   Carbon/stainless
 Size:   0.25″~56″~max.
 Type:  WN; SO; BL; SW; PL; THRD…
 Facing:   RF; RTJ; FF; FM; M; T; G; …
 Pressure:  Standard

 

2. Company Profile:

DHDZ China are manufacturer of the High Quality Steel Flanges and Forgings based on different standards: ASME, JIS, BS, ISO, DIN, EN, SABs etc.   
Flanges covers Weld Neck, Slip On,  Threaded, Lap Joint, Socket Weld, Blind, Orifice, Loose, Plate, Oval, Wind Power Flange, Tube Sheet, other Customized Flanges.     

Forgings covers Blocks, Disks, Rings, Cylinders, Shafts, Tubes, Bars, other Customized forgings, etc..     

Main Mateirals: Carbon Steel, Stainless Steel and Alloy steels;  

International Standards: ASME, JIS, DIN, GB, BS, EN, AS, SABS, etc.    

Standardization and Customization are both our advantages.    

 

Certificate: ISO system, PED certificates, TUV certified.     

Nearly 20 years experience;   

clients from more than 15 Countries in EU, USA, Gulf area, UK, South America, AU, Asia, etc..    

We will do our best to support you no matter big or small you are!  

3. SPECIFICATION DETAILS: 
 

Material Carbon steel ASTM A105, A350 LF1, LF2, LF3, LF6, CL1/CL2,; A694 F52, F60, F65, F70; A516 Gr. 60, 70; BS-EN 15712-2 P245GH, P280GH; EN15712-4 P355NH, P355QH; EN15713 P250GH, P265GH; DIN 17243 C22.8; VD-TUEV350/3 C21; GB/T 1591 Q345B, Q420B; NB/T 47008 16Mn,20#; BS 15710-2 S235JRG2;
Stainless steel ASTM A182 F304/304L, F316/316L, F316H, F304H, F321H, F310, F316Ti;
NB/T 47571 S30403, S30408, S31603, S31608, S32168;
BS-EN 15712-5 1.4301, 1.4307, 1.4404, 1.4541, 1.4571;
Alloy steel ASTM A182 F95, F9, F11, F12, F22,F91,F51,F53,F55,F60,F44,etc.
NB/T 47008 15CrMo, 12Cr1MoV, 1Cr5Mo;
GB/T 3077 42CrMo, 30CrMo, 35CrMo; 
  C-276/UNS N15716 ASTM B575/ASME SB-575,ASTM B574/ASME SB-574,ASTM B622/ASME SB-622,ASTM B619/ASME SB-619,ASTM B366/ASME SB-366,ASTM B564/ASME SB-564
Dimension Standard
(DN15-DN4000mm)
ANSI & ASWE (class 150-2500) B16.5, B16.47, B16.48;
DIN (6-40bar) DIN2527, 2573, 2576, 2630-2638, 2627-2629, 2565-2569;
JIS (5K -30K) JIS B2202, 2210, 2220;
BS EN1092-1 (6-40Bar) type 01, type 02, type 03, type 04, type 05, type 11, type 12, type 13, type 21, etc.
others MSS SP44, AWWA C207, API 6A, API 16A, AS 2129, GB/T9119, JB/T 74, HG/T2571, 20615, SH 3406, Q/GDW 705, etc.. other equivalent standards, and customization with drawings;
TYPE 1.Flat flange  2.Blind flange  3.Slip on 4.Lap joint flange 5.Welding neck Flange
6.Socket welding 7.Threaded flange  8.Long welding neck flange. etc.
Connection Raised Face, Flat Face, Ring Type Joint, Lap-Joint Face, Large Male-Female, Small Male-Female, Large Tongue, Groove, Small-Tongue, Groove, etc
Size 1/2″-100″
Package 1.>Standard export packaging (Plywood Case Of Outside,Plastic Cloth Of Inside).
2:As Customers’ Requirements
Certificate TUV,ISO9001:2015;
Applications Water works, Shipbuilding industry, Petrochemical & Gas industry, Power industry, Valve industry,and general pipes connecting projects etc.

4. Packages:
 

5. Quality Certificates: 

6. Machineries and testing equipments

Wind Power Shaft Forging 

1)Forged SHAFT,forged RING;forged BLOCK;forged FLANGE.

Pipe sheet,gear ring,slewing bearing ring…most of forging parts.

Forged steel flanges/carbon steel flanges/stainless steel flanges.

2) Material: 4130, 4140, 4317, 4142, 4340, UNS440, 34CrNi3Mo, 25Cr2Ni4MOV, 18CrNiMo5, 30CrMo, 9Cr2Mo, 9Cr2W, 9Cr3Mo, 60CrMoV etc.

3)Dual certified to ASME/ASTM SA/A182 and EN15712-5 or DIN17440 

4)PED-AD 2000-Merkblatt W0
 

Name:   Shaft;axle;bar
  Raw material:   carbon/stainless/alloy steel
  Min size:    Ø30x50mm
  Max size:   Ø1000x5000mm
 Min weight:  0.30kg
 Max weight:   20000kg
Heat treatment:   Normalize/Quench/tempering

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Pressure Casting
Application: Hardware
Material: Aluminium
Heat Treatment: Quenching
Customization:
Available

|

How do electronic or computer-controlled components integrate with slewing rings in modern applications?

In modern applications, electronic or computer-controlled components are often integrated with slewing rings to enhance functionality, precision, and automation. This integration allows for advanced control, monitoring, and optimization of rotating systems. Here’s a detailed explanation of how electronic or computer-controlled components integrate with slewing rings in modern applications:

  • Sensor Integration: Electronic sensors can be integrated with slewing rings to provide real-time feedback and data on various parameters. For example, position sensors can be used to accurately track the position and angle of the slewing ring, enabling precise control and positioning of the rotating components. Load sensors can measure the load applied to the slewing ring, allowing for dynamic load monitoring and optimization.
  • Control Systems: Computer-controlled components, such as programmable logic controllers (PLCs) or microcontrollers, can be used to manage the operation of slewing rings. These control systems can receive input from sensors and execute algorithms to control the speed, direction, and positioning of the slewing ring. By integrating electronic control systems, precise and automated control of the slewing ring can be achieved, improving efficiency and reducing human error.
  • Automation and Synchronization: In modern applications, slewing rings are often integrated into automated systems where they work in synchronization with other components. Electronic or computer-controlled components can facilitate this synchronization by coordinating the movements of multiple slewing rings or integrating them with other automated processes. This integration enables seamless and optimized operation of the rotating system as a whole.
  • Data Monitoring and Analysis: Electronic components can be used to collect and analyze data from slewing rings. This data can include parameters such as position, speed, temperature, and load. By monitoring and analyzing this data, it is possible to identify patterns, detect anomalies, and optimize the performance of the slewing rings. This information can be used for predictive maintenance, energy optimization, and performance improvement.
  • Communication and Networking: Electronic components enable communication and networking capabilities for slewing rings. They can be connected to a network or interface with other control systems, allowing for remote monitoring, control, and integration into larger systems. This enables centralized monitoring and control of multiple rotating systems, facilitating efficient operation and maintenance.
  • Feedback and Safety Systems: Electronic components can provide feedback and safety features in slewing ring applications. For example, limit switches or proximity sensors can detect the end positions of the slewing ring’s rotation and trigger safety mechanisms or control actions accordingly. This ensures safe operation, prevents over-rotation, and protects the equipment and personnel.

By integrating electronic or computer-controlled components with slewing rings, modern applications can achieve enhanced control, precision, automation, and data-driven optimization. This integration allows for efficient operation, improved safety, accurate positioning, synchronization with other systems, and the ability to adapt to changing operational requirements. It paves the way for advanced technologies such as robotics, Internet of Things (IoT), and Industry 4.0, where slewing rings play a vital role in the seamless integration of mechanical and electronic systems.

What safety considerations should be taken into account when using slewing rings in industrial settings?

When using slewing rings in industrial settings, several safety considerations should be taken into account to ensure the well-being of personnel, equipment, and the surrounding environment. Here’s a detailed explanation of the safety considerations when using slewing rings:

  • Proper Training and Familiarity: Personnel involved in the operation, maintenance, and servicing of systems equipped with slewing rings should receive proper training and be familiar with the specific procedures and safety guidelines related to slewing ring usage. This includes understanding the system’s limitations, recommended operating parameters, and emergency procedures.
  • Safe Working Distance: Establishing a safe working distance is crucial when working with rotating systems that incorporate slewing rings. Adequate barriers, guardrails, or safety signs should be in place to prevent unintended access to hazardous areas around the slewing ring. Personnel should be aware of the safe working zones and maintain a safe distance from the rotating components.
  • Lockout/Tagout Procedures: Before performing any maintenance or repair tasks on systems with slewing rings, proper lockout/tagout procedures should be followed to ensure the equipment is de-energized and cannot be accidentally started. This prevents unexpected rotation of the slewing ring during maintenance activities, reducing the risk of entanglement or injury.
  • Personal Protective Equipment (PPE): Personnel working with or around slewing rings should wear appropriate personal protective equipment, such as safety helmets, protective eyewear, gloves, and safety footwear. The specific PPE requirements may vary depending on the nature of the industrial setting and potential hazards associated with slewing ring operation.
  • Regular Inspection and Maintenance: Routine inspection and maintenance of slewing rings are essential for identifying any signs of wear, damage, or misalignment. Regularly scheduled inspections help detect potential issues early on and allow for timely repairs or replacements, reducing the risk of sudden failures or accidents during operation.
  • Proper Lubrication: Adequate lubrication of slewing rings is crucial for their optimal performance and longevity. Lubrication intervals and methods recommended by the manufacturer should be followed to ensure proper lubrication. Improper or inadequate lubrication can lead to increased friction, overheating, accelerated wear, and potential failure of the slewing ring.
  • Environmental Considerations: The environmental conditions in which slewing rings operate should be taken into account for safety purposes. Factors such as temperature extremes, moisture, dust, or corrosive substances can affect the performance and durability of slewing rings. Proper sealing, protective coatings, and environmental controls should be implemented to mitigate potential hazards and ensure safe operation.
  • Emergency Stop and Shutdown: Rotating systems equipped with slewing rings should be equipped with emergency stop buttons or other means of immediate shutdown. Personnel should be trained on how to use these emergency stop features effectively and be aware of the emergency shutdown procedure to quickly and safely halt the rotation of the slewing ring in case of an emergency.
  • Compliance with Regulations and Standards: It is essential to comply with relevant safety regulations, standards, and industry guidelines when using slewing rings in industrial settings. These regulations may vary depending on the region and industry-specific requirements. Adhering to these guidelines helps ensure the safety and compliance of the equipment and protects against potential hazards.

In summary, safety considerations when using slewing rings in industrial settings include proper training, maintaining safe working distances, following lockout/tagout procedures, wearing appropriate PPE, conducting regular inspections and maintenance, ensuring proper lubrication, considering environmental factors, implementing emergency stop measures, and complying with safety regulations. By addressing these safety considerations, the risks associated with slewing ring operation can be minimized, promoting a safe working environment and preventing accidents or injuries.

Can slewing rings be customized for specific industries or machinery configurations?

Yes, slewing rings can be customized to meet the specific requirements of different industries or machinery configurations. Customization allows slewing rings to be tailored to suit unique applications, operating conditions, and integration needs. Here’s a detailed explanation of how slewing rings can be customized:

Slewing ring manufacturers understand that different industries and machinery configurations may have specific demands that require customized solutions. By working closely with customers and understanding their requirements, slewing ring manufacturers can offer the following customization options:

  • Dimensions and Load Capacity: Slewing rings can be customized in terms of their dimensions, such as outer diameter, inner diameter, and height, to fit specific space constraints or load requirements. This ensures that the slewing ring can be seamlessly integrated into the machinery or equipment.
  • Mounting Interfaces: Customized slewing rings can be designed with specific mounting interfaces to match the existing or planned machinery configuration. This facilitates easy installation and compatibility with other components.
  • Gear Specifications: For applications that require integrated gears, slewing rings can be customized with specific gear specifications. This includes the number of teeth, module, pressure angle, gear quality, and backlash requirements. Customized gear specifications ensure smooth and precise motion control.
  • Sealing Systems: Slewing rings can be customized with sealing systems to provide protection against environmental factors such as dust, water, and contaminants. Different sealing options, such as labyrinth seals, lip seals, or combination seals, can be tailored to meet the specific requirements of the application.
  • Materials and Coatings: Customization allows slewing rings to be manufactured using different materials and surface coatings to enhance their performance in specific industries or operating conditions. Materials such as stainless steel, heat-treated steels, or corrosion-resistant alloys can be chosen based on factors like temperature, corrosion resistance, or weight considerations.
  • Specialized Features: Depending on the industry or application, slewing rings can be customized with specialized features. This may include integrated sensors for position feedback, temperature sensors, or additional functionalities like locking mechanisms, lubrication systems, or anti-corrosion treatments.

The ability to customize slewing rings for specific industries or machinery configurations ensures that the resulting solution is optimized for performance, reliability, and longevity in the intended application. Customization allows for a precise match between the slewing ring and the machinery, considering factors such as space constraints, load requirements, environmental conditions, and integration needs.

It is important to work closely with slewing ring manufacturers or suppliers who have expertise in customization and can provide engineering support to develop the most suitable solution for the specific industry or machinery configuration. By leveraging customization options, industries can benefit from slewing rings that are specifically designed to meet their unique requirements and optimize the performance of their machinery or equipment.

China Professional Ring Forging Wind Power Ring 4140 4142 Slewing Bearing Alloy Steel Ring  China Professional Ring Forging Wind Power Ring 4140 4142 Slewing Bearing Alloy Steel Ring
editor by CX 2024-04-04

China Professional Carbon Steel Ring Foring Seamless Rolled Ring Foring Bearing Ring Forgings

Product Description

carbon steel ring foring seamless rolled ring foring bearing ring forgings

Ring Forging

Production instructions

 We provide best ring forgings for slewing bearing manufacturer.Under the ring using condition of heavy load and overturning moment, we adopt electric + vacuum degassing raw material, advanced processing technology, ensure slewing ring comprehensive performance rigidity, strength, ductility. And the deviation at any point of surface is less than HB20, avoiding quality defects in subsequent processing hobbing, raceway machining, tooth surface during quenching.

Production Process

Equipment Exhibition

Ring Forging Details

Product Material 50MN,42crmo,S48C,Q345 etc
Supply Supply over 100,000 sets forged bearing used in slewing bearing
Size Range Diameter less than 8000mm
Forging Process Free forging
Machining Process CNC machining
Heat Treatment N+T+A+Q

Product Show

Quality Assurance-TUV Certificate
Quality System Certificate:
We have Grade A Manufacture License of Special Equipment , Press Equipment Directive Quality-Assurance System Certificate , China Classification Society Certificate of Work Approval, TUV Certificate
Perfect Inspection Process:
Raw material inspection (5steps) – Raw materials testing is to ensure the raw material conforming to the order requirements.
Process testing (10steps) -Each processing step testing is to guarantee each step product qualified.
Factory testing (6steps) -Assure 100% product qualified rate to meet customer’s requirements
Contact Us

All products can be customerized designed . We will supply professional service within 24 hours .Welcome to contact .

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Hot Forging
Application: Machinery Parts
Material: Steel
Heat Treatment: Normalizing+Tempering+ Annealing+ Quenching
Customization:
Available

|

Can you describe the factors to consider when selecting slewing rings for specific applications?

When selecting slewing rings for specific applications, several factors need to be considered to ensure optimal performance and reliability. Here’s a detailed description of the factors to consider:

  • Load Requirements: The load capacity of the slewing ring should match the anticipated loads in the application. Consider both the maximum static load (weight of the structure or equipment) and dynamic load (forces during operation). It is crucial to analyze the load distribution, including axial, radial, and moment loads, and select a slewing ring with sufficient load-carrying capacity to handle these loads.
  • Space Limitations: Evaluate the available space for the installation of the slewing ring. Consider the diameter, height, and width of the slewing ring to ensure it fits within the space constraints of the application. It is essential to consider both the external dimensions of the slewing ring and the required clearance for rotation.
  • Rotational Speed: Determine the required rotational speed of the slewing ring. Consider the application’s operating speed and any specific speed limitations. The slewing ring should be selected to accommodate the rotational speed requirements while maintaining smooth and efficient operation.
  • Environmental Conditions: Evaluate the operating environment of the application. Factors such as temperature, humidity, dust, water exposure, chemicals, and corrosive elements should be considered. Choose a slewing ring with appropriate sealing systems, corrosion-resistant materials, and lubrication options to withstand the specific environmental conditions.
  • Accuracy and Positioning: Some applications require precise positioning and rotational accuracy. Determine the required level of accuracy and select a slewing ring that provides the necessary precision. Factors such as gear mechanism, backlash control, and manufacturing tolerances contribute to the accuracy of the slewing ring.
  • Operating Conditions: Consider the overall operating conditions of the application, including factors such as shock and vibration levels, duty cycle, continuous or intermittent operation, and expected service life. The slewing ring should be designed to withstand the anticipated operating conditions and provide reliable performance over the desired lifespan.
  • Integration and Compatibility: Assess the integration requirements of the slewing ring with the rest of the system or equipment. Consider factors such as mounting interfaces, connection points, gear compatibility, and the need for additional components such as drive systems or bearings. Ensure that the selected slewing ring is compatible with the existing or planned system components.
  • Industry Standards and Regulations: Depending on the application, specific industry standards and regulations may apply. Consider any applicable standards, such as ISO specifications or industry-specific guidelines, to ensure compliance and safety in the selection of the slewing ring.

By carefully analyzing these factors and selecting a slewing ring that meets the specific requirements of the application, one can ensure optimal performance, longevity, and reliability of the slewing ring in its intended use.

How do slewing rings contribute to the adaptability and versatility of rotating systems in various settings?

Slewing rings play a crucial role in enhancing the adaptability and versatility of rotating systems across various settings. Here’s a detailed explanation of how slewing rings contribute to the adaptability and versatility of rotating systems:

  • 360-Degree Rotation: Slewing rings enable 360-degree continuous rotation, allowing rotating systems to operate in any direction. This flexibility is especially valuable in applications such as cranes, excavators, and wind turbines, where unrestricted rotation is necessary to perform tasks efficiently and access multiple work zones without repositioning the entire system.
  • Load-Bearing Capacity: Slewing rings are designed to handle significant radial, axial, and moment loads. Their robust construction and large diameter enable them to support heavy equipment and loads, making them suitable for a wide range of applications, including construction machinery, material handling systems, and offshore platforms. The high load-bearing capacity of slewing rings contributes to the adaptability of rotating systems in demanding settings.
  • Compact Design: Slewing rings have a compact and space-saving design compared to alternative mechanisms for rotational movement. This compactness allows for the integration of slewing rings into systems where space is limited, such as compact construction machinery, industrial robots, and medical equipment. The compact design of slewing rings enhances the adaptability of rotating systems in confined or restricted environments.
  • Versatile Mounting Options: Slewing rings offer versatile mounting options, allowing them to be easily integrated into different types of rotating systems. They can be mounted using various methods, including bolted connections, gear or pinion arrangements, or hydraulic or electric drives. This versatility in mounting options enables slewing rings to adapt to the specific requirements and constraints of different applications and settings.
  • Support for Multiple Components: Slewing rings provide support for various components that are essential for rotating systems. For example, they can support booms, arms, or jibs in construction machinery, or act as a base for rotating platforms or turntables in manufacturing or entertainment industries. By providing a stable and reliable foundation, slewing rings enable the integration of multiple components, enhancing the versatility and adaptability of the overall system.
  • Customization and Specialized Designs: Slewing rings can be customized and designed to meet specific application requirements. Manufacturers can tailor slewing rings to accommodate specific load capacities, dimensions, mounting arrangements, sealing systems, or environmental conditions. This customization allows for the adaptation of slewing rings to diverse settings, ensuring optimal performance and functionality.
  • Integration with Control Systems: Slewing rings can be integrated with electronic or computer-controlled components, such as sensors, actuators, and control systems. This integration enables precise control, automation, and synchronization of rotating systems. By incorporating advanced control features, slewing rings can adapt to dynamic operating conditions, optimize performance, and support advanced functionalities, such as coordinated motion, precision positioning, or remote monitoring.

In summary, slewing rings contribute to the adaptability and versatility of rotating systems by enabling 360-degree rotation, providing high load-bearing capacity, offering a compact design, supporting versatile mounting options, accommodating multiple components, allowing customization, and facilitating integration with control systems. These characteristics make slewing rings suitable for a wide range of applications and settings, enhancing the versatility and adaptability of rotating systems in industries such as construction, manufacturing, transportation, renewable energy, and many others.

How does the choice of materials impact the performance of slewing rings in different environments?

The choice of materials significantly impacts the performance of slewing rings in different environments. The selection of appropriate materials ensures the desired strength, durability, corrosion resistance, and overall reliability of the slewing rings. Here’s a detailed explanation of how the choice of materials impacts the performance of slewing rings in different environments:

  • Corrosion Resistance: Different environments may expose slewing rings to corrosive elements such as moisture, chemicals, or saltwater. Choosing materials with high corrosion resistance, such as stainless steel or corrosion-resistant alloys, helps protect the slewing rings from chemical reactions and rust formation. Corrosion-resistant materials ensure the longevity and reliability of slewing rings, especially in marine, offshore, or chemical industry applications.
  • Temperature Resistance: Environmental conditions, such as extreme temperatures or thermal cycling, can affect the performance of slewing rings. Materials that exhibit excellent temperature resistance, such as heat-treated steels or specialized alloys, are crucial in applications where slewing rings are exposed to high or low temperatures. These materials maintain their mechanical properties and dimensional stability, ensuring reliable performance even in demanding temperature environments.
  • Wear and Fatigue Resistance: In applications with high loads, repetitive movements, or abrasive environments, slewing rings may experience wear and fatigue. Choosing materials with high wear resistance, such as hardened steels or materials with specialized coatings, minimizes surface damage and extends the service life of the slewing rings. These materials can withstand the repetitive stresses and abrasive conditions, reducing the risk of premature failure.
  • Weight Considerations: In certain applications, weight is a critical factor. Slewing rings that are used in lightweight or mobile equipment may require materials that offer a balance between strength and weight. Lightweight materials like aluminum or high-strength composites can be suitable choices to reduce the overall weight of the slewing rings and improve the efficiency and maneuverability of the equipment.
  • Load Capacity: The choice of materials affects the load-carrying capacity of slewing rings. Materials with high tensile strength and fatigue resistance, such as specialized steels or alloys, enhance the load-bearing capabilities of the slewing rings. The selection of materials with appropriate mechanical properties ensures that the slewing rings can handle the required loads without deformation or failure.
  • Compatibility with Lubricants: Lubrication is essential for smooth operation and reduced friction in slewing rings. The choice of materials should consider their compatibility with the lubricants used in the specific environment. Certain materials may be more compatible with certain types of lubricants, ensuring optimal lubrication and minimizing wear and friction.
  • Electrical Conductivity: In applications where electrical conductivity is required, such as in certain industrial or robotic systems, materials with appropriate electrical conductivity properties may be necessary. Copper or specific alloys can be chosen to provide the desired electrical conductivity while maintaining the mechanical integrity of the slewing rings.

By selecting the appropriate materials based on the environmental conditions and specific application requirements, the performance and reliability of slewing rings can be optimized. Manufacturers and engineers consider factors such as corrosion resistance, temperature resistance, wear resistance, weight considerations, load capacity, lubricant compatibility, and electrical conductivity to determine the most suitable materials for slewing rings in different environments.

China Professional Carbon Steel Ring Foring Seamless Rolled Ring Foring Bearing Ring Forgings  China Professional Carbon Steel Ring Foring Seamless Rolled Ring Foring Bearing Ring Forgings
editor by CX 2024-03-30

China Professional Wind Power 4140 4142 Alloy Steel Forged Steel Ring for Slewing Bearing

Product Description

Steel Grade 4140,4130,A1050,F11,5140,304L,316L,321,P11,F22,4340
1.2344, 17CrNiMo6, 20MnMo, S355NL
18CrNiMo7-6
42CrMo, 40CrNiMo

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Gravity Casting
Application: Agricultural Machinery Parts
Material: Steel
Heat Treatment: Tempering
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

Can you explain the primary functions and roles of slewing rings in various applications?

Slewing rings play crucial functions and serve different roles in various applications across industries. These specialized bearings enable controlled rotational movement and support heavy loads. Here’s a detailed explanation of the primary functions and roles of slewing rings in different applications:

  • Construction and Cranes: In construction machinery and cranes, slewing rings are used to support the boom or jib, enabling 360-degree rotation. They provide a stable and low-friction interface that allows for efficient material handling and precise positioning of heavy loads. Slewing rings in these applications must withstand high axial, radial, and moment loads.
  • Wind Turbines: Slewing rings play a critical role in wind turbine systems. They support the rotor and allow it to rotate according to wind direction, facilitating efficient power generation. Slewing rings in wind turbines must handle significant loads while ensuring smooth rotation and precise alignment between the rotor and the nacelle.
  • Industrial Equipment: Slewing rings find applications in various industrial equipment, including indexing tables, turntables, robotic arms, and packaging machinery. In these applications, slewing rings enable controlled and precise rotation, allowing for accurate positioning, indexing, and automation. They contribute to the overall efficiency and functionality of industrial machinery.
  • Transportation and Automotive: Slewing rings are utilized in transportation and automotive applications, such as vehicle cranes, aerial platforms, and rotating platforms for heavy-duty vehicles. They provide a stable and reliable connection that enables safe and controlled rotation. In these applications, slewing rings must withstand dynamic loads and harsh operating conditions while ensuring the safety and stability of the equipment.
  • Medical and Rehabilitation Equipment: Slewing rings are important components in medical and rehabilitation equipment, including patient lifts and adjustable beds. They enable smooth and controlled movement, allowing for easy and safe patient transfers and positioning. Slewing rings in these applications must provide precise and quiet operation, ensuring patient comfort and care.
  • Aerospace and Defense: Slewing rings are utilized in aerospace and defense applications, such as radar systems, missile launchers, and satellite antennas. They enable precise and controlled movement in critical systems, contributing to accurate tracking, targeting, and communication. Slewing rings in aerospace and defense applications must meet stringent requirements for reliability, precision, and durability.
  • Marine and Offshore: Slewing rings are employed in marine and offshore equipment, including cranes, davits, and rotating platforms on ships and offshore rigs. They enable heavy lifting and controlled rotation in challenging marine environments. Slewing rings in marine applications must be corrosion-resistant and capable of withstanding harsh weather conditions and high loads.

Overall, slewing rings serve as essential components in a wide range of applications, enabling controlled rotation, supporting heavy loads, and ensuring precise positioning. Their versatility and ability to withstand varying loads and operating conditions make them invaluable in industries such as construction, wind energy, industrial automation, transportation, healthcare, aerospace, and marine sectors.

Can you provide insights into the importance of proper installation and alignment of slewing rings?

Proper installation and alignment of slewing rings are of utmost importance for ensuring optimal performance, longevity, and safety of rotating systems. Here’s a detailed explanation of the importance of proper installation and alignment of slewing rings:

  • Load Distribution: Correct installation and alignment of slewing rings ensure proper load distribution across the rolling elements and raceways. When a slewing ring is improperly installed or misaligned, excessive loads may be concentrated on specific areas, leading to accelerated wear, premature failure, and reduced load-bearing capacity. Proper alignment helps distribute loads evenly, maximizing the life expectancy of the slewing ring.
  • Smooth Operation: Accurate installation and alignment contribute to the smooth operation of rotating systems. Misalignment can result in increased friction, uneven motion, vibrations, and noise. These issues not only reduce efficiency but also impact the overall performance and reliability of the system. Proper alignment minimizes friction and ensures smooth and precise rotational movement, enhancing the system’s efficiency and productivity.
  • Reduced Wear and Tear: Improper installation or misalignment can cause excessive wear and tear on the slewing ring and associated components. Misalignment can lead to increased rolling element and raceway stresses, resulting in accelerated fatigue and surface damage. By achieving proper alignment, the slewing ring operates within its designed parameters, reducing wear and extending its operational life.
  • Optimized Performance: Proper installation and alignment directly impact the performance of rotating systems. Accurate alignment ensures that components such as gears, motors, and drive systems mesh correctly with the slewing ring. This alignment facilitates efficient power transmission, reduces energy losses, and improves the overall performance and responsiveness of the system.
  • Prevention of Structural Damage: Misalignment of slewing rings can exert excessive forces on the supporting structure or adjacent components. Over time, these forces can cause structural damage, misalignment in other parts of the system, or even equipment failure. Proper installation and alignment help prevent such structural damage, ensuring the integrity and longevity of the entire system.
  • Safety Considerations: Correct installation and alignment of slewing rings are crucial for safety in rotating systems. Misalignment can lead to unexpected movements, uncontrolled motion, or component failure, posing a risk to personnel, equipment, and the surrounding environment. Proper alignment reduces the likelihood of accidents, improves operational safety, and ensures compliance with safety regulations.
  • Ease of Maintenance: Properly aligned slewing rings are easier to maintain and service. Routine maintenance tasks such as lubrication, inspection, and replacement of components can be performed more efficiently when the slewing ring is correctly installed and aligned. This reduces downtime, extends maintenance intervals, and improves the overall operational efficiency of the system.

In summary, proper installation and alignment of slewing rings are critical for achieving optimal performance, reliability, and safety in rotating systems. Accurate alignment ensures load distribution, smooth operation, reduced wear, optimized performance, prevention of structural damage, enhanced safety, and ease of maintenance. It is essential to follow manufacturer guidelines, industry standards, and best practices to ensure the correct installation and alignment of slewing rings, maximizing their operational lifespan and the efficiency of the entire system.

What safety considerations should be taken into account when using slewing rings in industrial settings?

When using slewing rings in industrial settings, several safety considerations should be taken into account to ensure the well-being of personnel, equipment, and the surrounding environment. Here’s a detailed explanation of the safety considerations when using slewing rings:

  • Proper Training and Familiarity: Personnel involved in the operation, maintenance, and servicing of systems equipped with slewing rings should receive proper training and be familiar with the specific procedures and safety guidelines related to slewing ring usage. This includes understanding the system’s limitations, recommended operating parameters, and emergency procedures.
  • Safe Working Distance: Establishing a safe working distance is crucial when working with rotating systems that incorporate slewing rings. Adequate barriers, guardrails, or safety signs should be in place to prevent unintended access to hazardous areas around the slewing ring. Personnel should be aware of the safe working zones and maintain a safe distance from the rotating components.
  • Lockout/Tagout Procedures: Before performing any maintenance or repair tasks on systems with slewing rings, proper lockout/tagout procedures should be followed to ensure the equipment is de-energized and cannot be accidentally started. This prevents unexpected rotation of the slewing ring during maintenance activities, reducing the risk of entanglement or injury.
  • Personal Protective Equipment (PPE): Personnel working with or around slewing rings should wear appropriate personal protective equipment, such as safety helmets, protective eyewear, gloves, and safety footwear. The specific PPE requirements may vary depending on the nature of the industrial setting and potential hazards associated with slewing ring operation.
  • Regular Inspection and Maintenance: Routine inspection and maintenance of slewing rings are essential for identifying any signs of wear, damage, or misalignment. Regularly scheduled inspections help detect potential issues early on and allow for timely repairs or replacements, reducing the risk of sudden failures or accidents during operation.
  • Proper Lubrication: Adequate lubrication of slewing rings is crucial for their optimal performance and longevity. Lubrication intervals and methods recommended by the manufacturer should be followed to ensure proper lubrication. Improper or inadequate lubrication can lead to increased friction, overheating, accelerated wear, and potential failure of the slewing ring.
  • Environmental Considerations: The environmental conditions in which slewing rings operate should be taken into account for safety purposes. Factors such as temperature extremes, moisture, dust, or corrosive substances can affect the performance and durability of slewing rings. Proper sealing, protective coatings, and environmental controls should be implemented to mitigate potential hazards and ensure safe operation.
  • Emergency Stop and Shutdown: Rotating systems equipped with slewing rings should be equipped with emergency stop buttons or other means of immediate shutdown. Personnel should be trained on how to use these emergency stop features effectively and be aware of the emergency shutdown procedure to quickly and safely halt the rotation of the slewing ring in case of an emergency.
  • Compliance with Regulations and Standards: It is essential to comply with relevant safety regulations, standards, and industry guidelines when using slewing rings in industrial settings. These regulations may vary depending on the region and industry-specific requirements. Adhering to these guidelines helps ensure the safety and compliance of the equipment and protects against potential hazards.

In summary, safety considerations when using slewing rings in industrial settings include proper training, maintaining safe working distances, following lockout/tagout procedures, wearing appropriate PPE, conducting regular inspections and maintenance, ensuring proper lubrication, considering environmental factors, implementing emergency stop measures, and complying with safety regulations. By addressing these safety considerations, the risks associated with slewing ring operation can be minimized, promoting a safe working environment and preventing accidents or injuries.

China Professional Wind Power 4140 4142 Alloy Steel Forged Steel Ring for Slewing Bearing  China Professional Wind Power 4140 4142 Alloy Steel Forged Steel Ring for Slewing Bearing
editor by CX 2024-02-29

China wholesaler Excavator Alloy Steel Bearing Forged Slewing Ring for Wind Power

Product Description

Steel Grade 4140,4130,A1050,F11,5140,304L,316L,321,P11,F22,4340
1.2344, 17CrNiMo6, 20MnMo, S355NL
18CrNiMo7-6
42CrMo, 40CrNiMo

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Processing Object: Metal
Molding Style: Forging
Molding Technics: Gravity Casting
Application: Agricultural Machinery Parts
Material: Steel
Heat Treatment: Tempering
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

How do slewing rings contribute to the adaptability and versatility of rotating systems in various settings?

Slewing rings play a crucial role in enhancing the adaptability and versatility of rotating systems across various settings. Here’s a detailed explanation of how slewing rings contribute to the adaptability and versatility of rotating systems:

  • 360-Degree Rotation: Slewing rings enable 360-degree continuous rotation, allowing rotating systems to operate in any direction. This flexibility is especially valuable in applications such as cranes, excavators, and wind turbines, where unrestricted rotation is necessary to perform tasks efficiently and access multiple work zones without repositioning the entire system.
  • Load-Bearing Capacity: Slewing rings are designed to handle significant radial, axial, and moment loads. Their robust construction and large diameter enable them to support heavy equipment and loads, making them suitable for a wide range of applications, including construction machinery, material handling systems, and offshore platforms. The high load-bearing capacity of slewing rings contributes to the adaptability of rotating systems in demanding settings.
  • Compact Design: Slewing rings have a compact and space-saving design compared to alternative mechanisms for rotational movement. This compactness allows for the integration of slewing rings into systems where space is limited, such as compact construction machinery, industrial robots, and medical equipment. The compact design of slewing rings enhances the adaptability of rotating systems in confined or restricted environments.
  • Versatile Mounting Options: Slewing rings offer versatile mounting options, allowing them to be easily integrated into different types of rotating systems. They can be mounted using various methods, including bolted connections, gear or pinion arrangements, or hydraulic or electric drives. This versatility in mounting options enables slewing rings to adapt to the specific requirements and constraints of different applications and settings.
  • Support for Multiple Components: Slewing rings provide support for various components that are essential for rotating systems. For example, they can support booms, arms, or jibs in construction machinery, or act as a base for rotating platforms or turntables in manufacturing or entertainment industries. By providing a stable and reliable foundation, slewing rings enable the integration of multiple components, enhancing the versatility and adaptability of the overall system.
  • Customization and Specialized Designs: Slewing rings can be customized and designed to meet specific application requirements. Manufacturers can tailor slewing rings to accommodate specific load capacities, dimensions, mounting arrangements, sealing systems, or environmental conditions. This customization allows for the adaptation of slewing rings to diverse settings, ensuring optimal performance and functionality.
  • Integration with Control Systems: Slewing rings can be integrated with electronic or computer-controlled components, such as sensors, actuators, and control systems. This integration enables precise control, automation, and synchronization of rotating systems. By incorporating advanced control features, slewing rings can adapt to dynamic operating conditions, optimize performance, and support advanced functionalities, such as coordinated motion, precision positioning, or remote monitoring.

In summary, slewing rings contribute to the adaptability and versatility of rotating systems by enabling 360-degree rotation, providing high load-bearing capacity, offering a compact design, supporting versatile mounting options, accommodating multiple components, allowing customization, and facilitating integration with control systems. These characteristics make slewing rings suitable for a wide range of applications and settings, enhancing the versatility and adaptability of rotating systems in industries such as construction, manufacturing, transportation, renewable energy, and many others.

How does the choice of materials impact the performance of slewing rings in different environments?

The choice of materials significantly impacts the performance of slewing rings in different environments. The selection of appropriate materials ensures the desired strength, durability, corrosion resistance, and overall reliability of the slewing rings. Here’s a detailed explanation of how the choice of materials impacts the performance of slewing rings in different environments:

  • Corrosion Resistance: Different environments may expose slewing rings to corrosive elements such as moisture, chemicals, or saltwater. Choosing materials with high corrosion resistance, such as stainless steel or corrosion-resistant alloys, helps protect the slewing rings from chemical reactions and rust formation. Corrosion-resistant materials ensure the longevity and reliability of slewing rings, especially in marine, offshore, or chemical industry applications.
  • Temperature Resistance: Environmental conditions, such as extreme temperatures or thermal cycling, can affect the performance of slewing rings. Materials that exhibit excellent temperature resistance, such as heat-treated steels or specialized alloys, are crucial in applications where slewing rings are exposed to high or low temperatures. These materials maintain their mechanical properties and dimensional stability, ensuring reliable performance even in demanding temperature environments.
  • Wear and Fatigue Resistance: In applications with high loads, repetitive movements, or abrasive environments, slewing rings may experience wear and fatigue. Choosing materials with high wear resistance, such as hardened steels or materials with specialized coatings, minimizes surface damage and extends the service life of the slewing rings. These materials can withstand the repetitive stresses and abrasive conditions, reducing the risk of premature failure.
  • Weight Considerations: In certain applications, weight is a critical factor. Slewing rings that are used in lightweight or mobile equipment may require materials that offer a balance between strength and weight. Lightweight materials like aluminum or high-strength composites can be suitable choices to reduce the overall weight of the slewing rings and improve the efficiency and maneuverability of the equipment.
  • Load Capacity: The choice of materials affects the load-carrying capacity of slewing rings. Materials with high tensile strength and fatigue resistance, such as specialized steels or alloys, enhance the load-bearing capabilities of the slewing rings. The selection of materials with appropriate mechanical properties ensures that the slewing rings can handle the required loads without deformation or failure.
  • Compatibility with Lubricants: Lubrication is essential for smooth operation and reduced friction in slewing rings. The choice of materials should consider their compatibility with the lubricants used in the specific environment. Certain materials may be more compatible with certain types of lubricants, ensuring optimal lubrication and minimizing wear and friction.
  • Electrical Conductivity: In applications where electrical conductivity is required, such as in certain industrial or robotic systems, materials with appropriate electrical conductivity properties may be necessary. Copper or specific alloys can be chosen to provide the desired electrical conductivity while maintaining the mechanical integrity of the slewing rings.

By selecting the appropriate materials based on the environmental conditions and specific application requirements, the performance and reliability of slewing rings can be optimized. Manufacturers and engineers consider factors such as corrosion resistance, temperature resistance, wear resistance, weight considerations, load capacity, lubricant compatibility, and electrical conductivity to determine the most suitable materials for slewing rings in different environments.

What advantages do slewing rings offer compared to other rotational components?

Slewing rings offer several advantages compared to other rotational components. Their unique design and features make them a preferred choice in various applications. Here’s a detailed explanation of the advantages that slewing rings offer:

  • Compact Design: Slewing rings have a compact design that allows for efficient use of space. Compared to other rotational components such as gears and bearings, slewing rings provide a compact solution for supporting axial, radial, and moment loads while enabling rotational motion. Their compactness is especially advantageous in applications with limited space or weight constraints.
  • High Load-Carrying Capacity: Slewing rings are designed to handle significant loads. They are capable of supporting both axial and radial loads, as well as moment loads that result from uneven weight distribution or external forces. The robust construction and precise engineering of slewing rings enable them to withstand heavy loads, making them suitable for applications that require high load-carrying capacity.
  • Smooth Rotation: Slewing rings offer smooth rotation, allowing for precise and controlled motion. The rolling elements, whether balls or rollers, are positioned and guided within the raceways of the slewing ring to minimize friction and ensure smooth movement. This smooth rotation contributes to precise positioning and controlled motion, which is essential in applications that require accurate positioning and smooth operation.
  • Integrated Gear Mechanism: Many slewing rings come with an integrated gear mechanism. This eliminates the need for additional gearing components, simplifies the design, and reduces assembly time and costs. The integrated gear mechanism allows for torque transmission and rotational control, enabling precise and controlled motion without the need for external gearing systems.
  • Backlash Control: Slewing rings can be designed with minimal backlash, ensuring precise motion control. Backlash refers to the play or clearance between mating gears or components, which can lead to lost motion or inaccuracies in positioning. By minimizing backlash, slewing rings offer improved accuracy and repeatability in motion control applications.
  • Versatility and Customization: Slewing rings are highly versatile and can be customized to meet specific application requirements. They can be tailored in terms of dimensions, load capacity, mounting interfaces, gear specifications, sealing systems, and materials. This versatility allows slewing rings to be optimized for various industries and applications, ensuring the best performance and compatibility.
  • Durable and Low Maintenance: Slewing rings are designed to be durable and require minimal maintenance. They are constructed with high-quality materials, precision manufacturing, and appropriate sealing systems to withstand harsh operating conditions and contaminants. This durability and low maintenance requirement contribute to the long service life and reliability of slewing rings.

Overall, slewing rings offer advantages such as compact design, high load-carrying capacity, smooth rotation, integrated gear mechanism, backlash control, versatility, customization options, and durability. These advantages make slewing rings a preferred choice in various applications, including construction machinery, material handling equipment, cranes, wind turbines, robotics, and manufacturing systems.

China wholesaler Excavator Alloy Steel Bearing Forged Slewing Ring for Wind Power  China wholesaler Excavator Alloy Steel Bearing Forged Slewing Ring for Wind Power
editor by CX 2024-02-27