China supplier Outer Gear Turntable Bearing Slewing Ring for Excavator

Product Description

Product Description

 

With the tough, heavy-duty conditions of the mining industry, excavators, bucket wheel excavators and stackers / reclaimers are up against a real challenge. Slewing bearing solutions are vital for the performance and reliability of these applications.

 

Thanks to a high carrying capacity and high resistance to overturning moments, King Steel slewing bearing solutions improve:

 

* Machinery reliability
* Operator comfort
* Working accuracy
And, as a result, increase the availability and productivity of the excavator.

 

King Steel slewing bearing solutions are available in different designs to meet the requirements of mini excavators as well as giant shovels. With an Ruding Steel centralized lubrication system, the Ruding Steel slewing bearing solutions become even more efficient. 

Specifications:

Product Name

High Precision Slewing Bearing

Material

Chrome Steel

Operating Temperature

-40°C ~ +50°C

Heat treatment

Quenching and tempering, Raceway induction quenching

Standard

EN 15714 2.2; EN 15714 3.1.B ; EN15714 3.1.C

Features

Four Point Contact

Application

Crane, Excavator, all kinds of machine

Manufacturing Process:
Forging ring body material — Rough Lathing — Raceway heat treatment — Drilling — Teeth cutting — Teeth heat treatment — Ball hardness inspection — Assembling — Finall inspection — Packaging

Packaging & Shipping

Contact us

 

Please contact us for more information and quotations.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard or Nonstandard: Standard
Feature: High Speed, Vacuum, Antimagnetic, Cold-Resistant, Corrosion-Resistant, Heat-Resistant
Sealing Gland: Non-Seal
Samples:
US$ 1000/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

What are the different types and configurations of slewing rings available in the market?

Slewing rings are available in various types and configurations to cater to the diverse needs of different applications. The following are the different types and configurations of slewing rings commonly available in the market:

  • Single-Row Ball Slewing Rings: This type of slewing ring consists of a single row of balls placed between two rings. It offers compact design, low weight, and high load-carrying capacity. Single-row ball slewing rings are commonly used in applications where axial and radial loads need to be supported.
  • Double-Row Ball Slewing Rings: Double-row ball slewing rings have two rows of balls, providing higher load-carrying capacity compared to single-row designs. They are suitable for applications that require increased load capacity and improved stiffness.
  • Three-Row Roller Slewing Rings: Three-row roller slewing rings feature three rows of rollers arranged in a crisscross pattern. This configuration allows for higher load-carrying capacity and increased rigidity. Three-row roller slewing rings are commonly used in heavy-duty applications where significant radial, axial, and moment loads need to be supported.
  • Ball and Roller Combination Slewing Rings: In some cases, slewing rings are designed with a combination of ball and roller elements. This configuration provides a balance between load capacity and reduced friction. It offers improved rotational characteristics and is often used in applications requiring high load capacity and smooth rotation.
  • Internal Gear and External Gear Slewing Rings: Slewing rings can be equipped with internal or external gears. Internal gear slewing rings have the gear teeth on the inner ring, while external gear slewing rings have the gear teeth on the outer ring. The gear mechanism allows for controlled rotation and can be driven by external components such as motors or hydraulic systems. The choice between internal or external gear configuration depends on the specific application requirements.
  • Non-Gear Slewing Rings: Some slewing rings are designed without integrated gears. These non-gear slewing rings are often used in applications where the rotation is driven by external components or when a separate gear mechanism is already in place.
  • Customized and Specialized Slewing Rings: In addition to the standard types and configurations, slewing rings can be customized and designed to meet specific application requirements. Customized slewing rings may involve variations in dimensions, load capacity, gear specifications, sealing systems, or materials to suit unique applications or challenging operating conditions.

The availability of different types and configurations of slewing rings allows for the selection of the most suitable design based on factors such as load requirements, space limitations, rotational speed, environmental conditions, and application-specific needs. It is essential to consider these factors when choosing a slewing ring to ensure optimal performance and reliability in the intended application.

What are the different types and configurations of slewing rings available in the market?

Slewing rings are available in various types and configurations to cater to the diverse needs of different applications. The following are the different types and configurations of slewing rings commonly available in the market:

  • Single-Row Ball Slewing Rings: This type of slewing ring consists of a single row of balls placed between two rings. It offers compact design, low weight, and high load-carrying capacity. Single-row ball slewing rings are commonly used in applications where axial and radial loads need to be supported.
  • Double-Row Ball Slewing Rings: Double-row ball slewing rings have two rows of balls, providing higher load-carrying capacity compared to single-row designs. They are suitable for applications that require increased load capacity and improved stiffness.
  • Three-Row Roller Slewing Rings: Three-row roller slewing rings feature three rows of rollers arranged in a crisscross pattern. This configuration allows for higher load-carrying capacity and increased rigidity. Three-row roller slewing rings are commonly used in heavy-duty applications where significant radial, axial, and moment loads need to be supported.
  • Ball and Roller Combination Slewing Rings: In some cases, slewing rings are designed with a combination of ball and roller elements. This configuration provides a balance between load capacity and reduced friction. It offers improved rotational characteristics and is often used in applications requiring high load capacity and smooth rotation.
  • Internal Gear and External Gear Slewing Rings: Slewing rings can be equipped with internal or external gears. Internal gear slewing rings have the gear teeth on the inner ring, while external gear slewing rings have the gear teeth on the outer ring. The gear mechanism allows for controlled rotation and can be driven by external components such as motors or hydraulic systems. The choice between internal or external gear configuration depends on the specific application requirements.
  • Non-Gear Slewing Rings: Some slewing rings are designed without integrated gears. These non-gear slewing rings are often used in applications where the rotation is driven by external components or when a separate gear mechanism is already in place.
  • Customized and Specialized Slewing Rings: In addition to the standard types and configurations, slewing rings can be customized and designed to meet specific application requirements. Customized slewing rings may involve variations in dimensions, load capacity, gear specifications, sealing systems, or materials to suit unique applications or challenging operating conditions.

The availability of different types and configurations of slewing rings allows for the selection of the most suitable design based on factors such as load requirements, space limitations, rotational speed, environmental conditions, and application-specific needs. It is essential to consider these factors when choosing a slewing ring to ensure optimal performance and reliability in the intended application.

Can you provide insights into the importance of proper installation and alignment of slewing rings?

Proper installation and alignment of slewing rings are of utmost importance for ensuring optimal performance, longevity, and safety of rotating systems. Here’s a detailed explanation of the importance of proper installation and alignment of slewing rings:

  • Load Distribution: Correct installation and alignment of slewing rings ensure proper load distribution across the rolling elements and raceways. When a slewing ring is improperly installed or misaligned, excessive loads may be concentrated on specific areas, leading to accelerated wear, premature failure, and reduced load-bearing capacity. Proper alignment helps distribute loads evenly, maximizing the life expectancy of the slewing ring.
  • Smooth Operation: Accurate installation and alignment contribute to the smooth operation of rotating systems. Misalignment can result in increased friction, uneven motion, vibrations, and noise. These issues not only reduce efficiency but also impact the overall performance and reliability of the system. Proper alignment minimizes friction and ensures smooth and precise rotational movement, enhancing the system’s efficiency and productivity.
  • Reduced Wear and Tear: Improper installation or misalignment can cause excessive wear and tear on the slewing ring and associated components. Misalignment can lead to increased rolling element and raceway stresses, resulting in accelerated fatigue and surface damage. By achieving proper alignment, the slewing ring operates within its designed parameters, reducing wear and extending its operational life.
  • Optimized Performance: Proper installation and alignment directly impact the performance of rotating systems. Accurate alignment ensures that components such as gears, motors, and drive systems mesh correctly with the slewing ring. This alignment facilitates efficient power transmission, reduces energy losses, and improves the overall performance and responsiveness of the system.
  • Prevention of Structural Damage: Misalignment of slewing rings can exert excessive forces on the supporting structure or adjacent components. Over time, these forces can cause structural damage, misalignment in other parts of the system, or even equipment failure. Proper installation and alignment help prevent such structural damage, ensuring the integrity and longevity of the entire system.
  • Safety Considerations: Correct installation and alignment of slewing rings are crucial for safety in rotating systems. Misalignment can lead to unexpected movements, uncontrolled motion, or component failure, posing a risk to personnel, equipment, and the surrounding environment. Proper alignment reduces the likelihood of accidents, improves operational safety, and ensures compliance with safety regulations.
  • Ease of Maintenance: Properly aligned slewing rings are easier to maintain and service. Routine maintenance tasks such as lubrication, inspection, and replacement of components can be performed more efficiently when the slewing ring is correctly installed and aligned. This reduces downtime, extends maintenance intervals, and improves the overall operational efficiency of the system.

In summary, proper installation and alignment of slewing rings are critical for achieving optimal performance, reliability, and safety in rotating systems. Accurate alignment ensures load distribution, smooth operation, reduced wear, optimized performance, prevention of structural damage, enhanced safety, and ease of maintenance. It is essential to follow manufacturer guidelines, industry standards, and best practices to ensure the correct installation and alignment of slewing rings, maximizing their operational lifespan and the efficiency of the entire system.

China supplier Outer Gear Turntable Bearing Slewing Ring for Excavator  China supplier Outer Gear Turntable Bearing Slewing Ring for Excavator
editor by Dream 2024-05-17